This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The ...This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The findings revealed the formation ofγ-TiH andδ-TiH_(2) hydrides in the alloy after hydrogen charging.Prolonging hydrogen charging resulted in more significant degradation of the alloy microstructure,leading to deteriorated protectiveness of the surface film.This trend was further confirmed by the electrochemical measurements,which showed that the corrosion resistance of the alloy progressively worsened as the hydrogen charging time was increased.Consequently,this work provides valuable insights into the mechanisms underlying the corrosion of Ti-6Al-4V alloy under hydrogen charging conditions.展开更多
Corrosion and electrochemical behavior of 316L stainless steel was investigated in the presence of aerobic iron-oxidizing bacteria (IOB) and anaerobic sulfate-reducing bacteria (SRB) isolated from cooling water system...Corrosion and electrochemical behavior of 316L stainless steel was investigated in the presence of aerobic iron-oxidizing bacteria (IOB) and anaerobic sulfate-reducing bacteria (SRB) isolated from cooling water systems in an oil refinery using electrochemical measurement, scanning electron microscopy (SEM) and energy dispersive atom X-ray analysis(EDAX). The results show the corrosion potential and pitting potential of 316L stainless steel decrease distinctly in the presence of bacteria, in comparison with those observed in sterile medium under the same exposure time. SEM morphologies have shown that 316L stainless steel reveals no signs of pitting attack in the sterile medium. However, micrometer-scale corrosion pits were observed on 316L stainless steel surface in the presence of bacteria. The presence of SRB leads to higher corrosion rates than IOB. The interactions between the stainless steel surface, abiotic corrosion products, and bacterial cells and their metabolic products increased the corrosion damage degree of the passive film and accelerated pitting propagation.展开更多
Ti−6Al−4V alloy was fabricated via selective laser melting(SLM)to improve its corrosion resistance for implant.The microstructure and electrochemical corrosion behavior were investigated using scanning electron micros...Ti−6Al−4V alloy was fabricated via selective laser melting(SLM)to improve its corrosion resistance for implant.The microstructure and electrochemical corrosion behavior were investigated using scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),electrochemical test and contact angle test.It can be found that the as-selective laser melted(as-SLMed)Ti−6Al−4V alloys showβcolumnar microstructure in building direction and nearly circular checkerboard microstructure in scanning direction,while the wrought and wrought+HT samples exhibit equiaxed microstructure.The as-SLMed Ti−6Al−4V alloy exhibits better corrosion resistance than the wrought and wrought+HT samples due to hydrophobicity,high grain boundary density and uniform distribution of alloying elements in simulated artificial saliva at 37℃.展开更多
Al7075 alloy is a typical aviation aluminum with good mechanical properties and anodic oxidation effect.Laser engineered net shaping technology has unique advantages in the integrated forming of high-performance large...Al7075 alloy is a typical aviation aluminum with good mechanical properties and anodic oxidation effect.Laser engineered net shaping technology has unique advantages in the integrated forming of high-performance large aircraft structural parts.The manufacturing of 7075 aluminum alloy structural parts by laser engineered net shaping technology has become an important development direction in the future aerospace field.Electrochemical corrosion resistance of aluminum alloys is of vital importance to improve reliability and life-span of lightweight components.A comparative study on microstructure and anti-corrosion performance of Al7075 alloy prepared by laser additive manufacturing and forging technology was conducted.There are hole defects in LENS-fabricated Al7075 alloy with uniformly distributedηphase.No defects are observed in Al7075 forgings.The large S phase particles and small ellipsoidalηphase particles are found in Al matrix.The corrosion mechanisms were revealed according to the analysis of polarization curves and corrosion morphology.It was found that compared with that prepared by forgings,the additive manufactured samples have lower corrosion tendency and higher corrosion rate.Corrosion occurred preferentially at the hole defects.The incomplete passivation film at the defects leads to the formation of a local cell composed of the internal Al,corrosion solution and the surrounding passive film,which further aggravates the corrosion.展开更多
The electrochemical corrosion behavior of Ti(C,N)-based cermets with different Mo2C additions was investigated in freely aerated 10% H2SO4 and potentiodynamic polarization of all the materials was conducted from -0....The electrochemical corrosion behavior of Ti(C,N)-based cermets with different Mo2C additions was investigated in freely aerated 10% H2SO4 and potentiodynamic polarization of all the materials was conducted from -0.5 to 1.5 V. There are two passive regions for all polarization curves. The first should be attributed to passive film formation due to Ti(C,N), while the second may be due to the presence of Ni. Corrosion current density increases with M02C content increasing, from 2.06×10^-3 to 6.70×10^-3 mA/cm2. It is indicated that the corrosion resistance of Ti(C,N)-based cermets decreases with the increase of Mo2C addition. A skeleton of Ti(C,N) gains is observed after dissolution of Ni. The inner rim of cermets, rich in Mo2C, is corroded along with Ni binder and is more serious with the increase of Mo2C content. The secondary carbide Mo2C can be oxidized and dissolved in sulphuric acid.展开更多
Electrochemical techniques of the corrosion measurements of reinforcing steeI in concrete have been evaluated. These techniques include half-cell potential measurements, impressed voltage method, impressed current met...Electrochemical techniques of the corrosion measurements of reinforcing steeI in concrete have been evaluated. These techniques include half-cell potential measurements, impressed voltage method, impressed current method and potentiostatic polarization technique. The results of corrosion behaviour of the steel in both 5%NaCl and 5%MgSO4 show that each electrochemical technique provides some information about the condition of the steel bar or the corrosivity of the environment being evaluated, yet none provides a complete data regarding the corrosion resistance of reinforcing steel in aggressive media展开更多
Porous Al-Mg alloys with different nominal compositions were successfully fabricated via elemental powder reactive synthesis, and the phase composition, pore structure, and corrosion resistance were characterized with...Porous Al-Mg alloys with different nominal compositions were successfully fabricated via elemental powder reactive synthesis, and the phase composition, pore structure, and corrosion resistance were characterized with X-ray diffractometer, scanning electron microscope and electrochemical analyzer. The volume expansion ratio, open porosity and corrosion resistance in 3.5%(mass fraction) Na Cl aqueous solution of the alloys increase at first and then decrease with the increase of Mg content. The maxima of volume expansion ratio and open porosity are 18.3% and 28.1% for the porous Al-56%Mg(mass fraction) alloy, while there is the best corrosion resistance for the porous Al-37.5% Mg(mass fraction) alloy. The pore formation mechanism can be explained by Kirkendall effect, and the corrosion resistance can be mainly affected by the phase composition for the porous Al-Mg alloys. They would be of the potential application for filtration in the chloride environment.展开更多
The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN(M152), provide a basis for the optimization of material selection, a...The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN(M152), provide a basis for the optimization of material selection, and prevent the occurrence of failure. Moreover, the mechanism was investigated using the mass loss method, polarization curves, electrochemical impedance spectroscopy(EIS), stereology microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy(EDS). The results show that M152 steel suffers severe corrosion, especially pitting corrosion, in a high-salt-spray environment. In the early stage of the experiment, the color of the corrosion products was mainly orange. The products then gradually evolved into a dense, brown substance, which coincided with a decrease of corrosion rate. Correspondingly, the EIS spectrum of M152 in the late test also exhibited three time constants and presented Warburg impedance at low frequencies.展开更多
In this paper,a numerical model of fretting fatigue analysis of cablewire and the fretting fatigue damage constitutive model considering the multi-axis effect were established,and the user material subroutine UMAT was...In this paper,a numerical model of fretting fatigue analysis of cablewire and the fretting fatigue damage constitutive model considering the multi-axis effect were established,and the user material subroutine UMAT was written.Then,the constitutive model of wear morphology evolution of cable wire and the constitutive model of pitting evolution considering the mechanical-electrochemical effect were established,respectively.The corresponding subroutines UMESHMOTION_Wear and UMESHMOTION_Wear_Corrosion were written,and the fretting fatigue lifewas further predicted.The results showthat the numerical simulation life obtained by the programin this paper has the same trend as the tested one;the error is only about 0.7%in the medium life area;When the normal contact force increases from 120 to 240 N,the fretting life of cable wire decreases by 25%;When the evolution of wear morphology and corrosion effect are considered simultaneously,the depth of the wear zone exceeds 0.08mm after 600,000 loads,which ismuch larger than 0.04 mmwhen only the evolution of wear morphology is considered.When the evolution of wear morphology and corrosion morphology is considered simultaneously,the damage covers the whole contact surface after 300,000 loads,and the penetrating damage zone forms after 450,000 loads,which is obviously faster than that when only the wearmorphology evolution is considered.Themethod proposed in this paper can provide a feasible numerical simulation scheme for the visualization of the damage process and accurate life prediction of cable-supported bridges.展开更多
Sorbitol,triethanolamine,sodium benzoate,boric acid,and sodium carbonate were mixed to prepare a waterborne rust inhibitor.A temperature and humidity accelerated corrosion test was applied to investigate the corrosion...Sorbitol,triethanolamine,sodium benzoate,boric acid,and sodium carbonate were mixed to prepare a waterborne rust inhibitor.A temperature and humidity accelerated corrosion test was applied to investigate the corrosion behaviour of waterborne rust inhibitor coated Q235 steel and original Q235 steel,which was carried out in a temperature and humidity test chamber(WSHW-1000)at a temperature of 80℃and humidity of 95%.Compared with the original Q235,waterborne rust inhibitor coated Q235 has better resistance to corrosion in hot and humid ambient conditions.Electrochemical impedance spectroscopy and potentiodynamic polarization were measured with a three-electrode cell in 3.5%NaCl aqueous solution on a CHI760E potentiostat/galvanostat.Molecular dynamics was simulated to verify the synergistic corrosion inhibitory mechanism of sodium carbonate and triethanolamine.The test shows that the prepared waterborne rust inhibitor can reduce the tendency of Q235 to corrosion and can also effectively reduce the corrosion rate.展开更多
The corrosion behavior of 907 steel under thin electrolyte layer(TEL) has been investigated by means of cathodic polarization curve measurement, electrochemical impedance spectroscopy(EIS) and scanning electron micros...The corrosion behavior of 907 steel under thin electrolyte layer(TEL) has been investigated by means of cathodic polarization curve measurement, electrochemical impedance spectroscopy(EIS) and scanning electron microscopy(SEM). The results show that the cathodic diffusion current density presents the variation trend of initial increase and subsequent decrease with the decrease of TEL thickness, and the maximum deposits at 58 μm. The cotangent-hyperbolic impedance(O) is rationally first introduced to study the diffusion process of the reactants through the corrosion products layer with many permeable holes. The initial corrosion rate of 907 steel under different TEL thickness increases with the decrease of TEL thickness except that of 104 μm,whereas the corrosion rate after long time corrosion can be ranked as 104 μm﹥402 μm﹥198 μm﹥301 μm﹥bulk solution.展开更多
Corrosion of Mg–Y alloy was studied using electrochemical evaluations, immersion tests and SEM observations. Corrosion mechanisms of Mg-(0.25 and 2.5) Y alloy and Mg-(5, 8, and 15) Y alloy were uniform corrosion ...Corrosion of Mg–Y alloy was studied using electrochemical evaluations, immersion tests and SEM observations. Corrosion mechanisms of Mg-(0.25 and 2.5) Y alloy and Mg-(5, 8, and 15) Y alloy were uniform corrosion and pitting corrosion respectively, and the content of Mg_(24)Y_5 phases determined its effect acting as cathode to accelerate the corrosion or corrosion barrier to inhibit the corrosion. Corrosion resistance of Mg-(0.25, 2.5, 5, 8, and 15) Y alloys was as follows: Rt(Mg-0.25Y) 〈 Rt(Mg-8Y) 〈 Rt(Mg-15Y) 〈 Rt(Mg-5Y) 〈 Rt(Mg-2.5Y). Y could significantly improve the corrosion resistance of the Mg-Y alloy, but the excess of Y deteriorated the corrosion resistance of the Mg-Y alloy. The optimum content of Y in the studied alloys was 2.5%.展开更多
The electrochemical corrosion,wear,and tribocorrosion behavior of the novel Ti-19Zr-10Nb-1Fe alloy were investigated.The electrochemical corrosion analysis results show that the corrosion resistance of the Ti-19Zr-10N...The electrochemical corrosion,wear,and tribocorrosion behavior of the novel Ti-19Zr-10Nb-1Fe alloy were investigated.The electrochemical corrosion analysis results show that the corrosion resistance of the Ti-19Zr-10Nb-1Fe alloy is better than that of the Ti-6Al-4V alloy under the test conditions in this research.Compared with the static electrochemical corrosion,the corrosion resistance of Ti-19Zr-10Nb-1Fe alloy during tribocorrosion decreases significantly,because the wear accelerates corrosion.The wear volume of Ti-19Zr-10Nb-1Fe alloy is increased with the increase in applied load whether the electrochemical corrosion occurs or not.Due to the acceleration effect of electrochemical corrosion,the wear volume caused by electrochemical corrosion is larger than that without electrochemical corrosion.The results of Wa/Wc are much greater than 10,indicating that during the tribocorrosion process,the material loss caused by mechanical wear is much larger than that caused by electrochemical corrosion.Through SEM observation of the wear morphologies of Ti-19Zr-10Nb-1Fe alloy after tribocorrosion,it can be inferred that the micro-abrasion is the main wear mechanism.The above results show that during the tribocorrosion process,the corrosion accelerates wear,and the wear accelerates corrosion.展开更多
Duplex stainless steels(DSSs)used in subsea structures and desalination industries require high corrosion and erosion resistance as well as excellent mechanical properties.The newly introduced cast duplex grade ASTM A...Duplex stainless steels(DSSs)used in subsea structures and desalination industries require high corrosion and erosion resistance as well as excellent mechanical properties.The newly introduced cast duplex grade ASTM A8907 A has a unique composition and is expected to have a much better resistance to corrosion and erosion compared with the super-duplex grades 5 A and 6 A.This work is a comparative study of the mechanical properties,corrosion,and erosion-corrosion resistance of super-duplex grades 5 A and 6 A and the hyper-duplex grade 7 A.The three DSSs exhibited equiaxial austenite islands in the ferrite matrix and balanced phase ratios.The hardness of the grade 7 A was nearly 15%higher than those of the super-duplex grades,which is attributed to the effect of the higher contents of W and Mn in 7 A.The impact toughness of grade 7 A was found to be lower than those of the super-duplex grades due to the carbide precipitation resulting from the partial substitution of Mo with W.The oxide layer strengthening effect of rare earth elements and the higher pitting resistance equivalent number(PREN)of grade7 A resulted in higher corrosion resistance.The harder and more passive grade 7 A showed a 35%lower material loss during erosion-corrosion.展开更多
The influence of crystallization on the corrosion behavior of Al86Ni6La6Cu2 amorphous alloy in 0.01 M NaCl solution was investigated by electrochemical techniques. The Al86Ni6La6Cu2 amorphous alloy was prepared by mel...The influence of crystallization on the corrosion behavior of Al86Ni6La6Cu2 amorphous alloy in 0.01 M NaCl solution was investigated by electrochemical techniques. The Al86Ni6La6Cu2 amorphous alloy was prepared by melt spinning method, and the partially and fully crystallized states were obtained by controlled annealing. The evolution of the crystallization process after annealing was characterized by differential scanning calorimeter (DSC) and X-ray diffraction. The polarization curves revealed that all samples exhibited spontaneous passivation. The fully amorphous Al86Ni6La6Cu2 sample exhibited the best corrosion resistance. Partial and full crystallization resulted in deterioration of corrosion resistance in comparison with that of the as-spun amorphous state.展开更多
This paper studied the influence of aging treatment on the corrosion behavior and mechanism of Mg-Y alloys with different Y content through corrosion mass loss test, electrochemical test and corrosion morphologies obs...This paper studied the influence of aging treatment on the corrosion behavior and mechanism of Mg-Y alloys with different Y content through corrosion mass loss test, electrochemical test and corrosion morphologies observation. Results show that the peak-aging times of Mg-(0.25, 2.5, 5, 8 and 15) Y alloys at 250 ℃ were 4, 6, 10, 12 and 16 h. The aging treatment reduced the corrosion resistance of Mg-Y alloys, and the corrosion resistance of Mg-Y alloys became worse with increasing of the aging time. The change magnitude of the open circuit potentials for Mg-(0.25, 2.5)Y alloys was greater than that of Mg-(5, 8 and 15)-Y alloys. The polarization curves of Mg (0.25, 2.5, 5, 8 and 15) Y alloys had the similar shape after aging treatment, and the slopes of the anodic branch were greater than those of the cathodic branches. After aging treatment, the corrosion modes of Mg-0.25Y and Mg-(2.5, 5, 8 and 15) Y alloys were uniform corrosion and pitting corrosion with small local deep corrosion.展开更多
Extracts of elephant grass (Penniseturn purpureum) blended with some intensifier halides like ammonium chloride (AMC) and potassium iodide (PTI) were investigated as corrosion inhibitor for mild steel. The corro...Extracts of elephant grass (Penniseturn purpureum) blended with some intensifier halides like ammonium chloride (AMC) and potassium iodide (PTI) were investigated as corrosion inhibitor for mild steel. The corrosion process was monitored in 3.5% HCI by mass loss and electrochemical techniques at 30, 40, 50, 60 and 90 ℃. Addition of AMC and PTI increased the inhibition efficiency with the highest inhibition efficiency obtained with PTI blend- ed extract. The blends behaved as mixed type inhibitors and were spontaneously adsorbed on mild steel surface in exothermic nature. Synergistic parameters of the intensifier ions revealed cooperative effect. Kinetic data treatment indicated increase in energy barrier by intensifier ions. The results demonstrate that elephant grass extract blended with halide ions can act as alternative ecofriendly inhibitor for mild steel at elevated temperatures.展开更多
The corrosion inhibition effect of Capsella bursa-pastoris extracts(CBE) for Q235 carbon steels in 1 mol·L-1hydrochloric acid solution was studied using electrochemical methods, environmental scanning electron mi...The corrosion inhibition effect of Capsella bursa-pastoris extracts(CBE) for Q235 carbon steels in 1 mol·L-1hydrochloric acid solution was studied using electrochemical methods, environmental scanning electron microscopy(SEM) and Raman microscopy analysis. The polarization plots indicate that CBE serves as an effective, mixedtype inhibitor. Linear polarization resistance shows that increasing CBE concentration and temperature results in increased inhibition ef ficiency. The highest inhibition ef ficiency can reach 97% when adding 60 mg·L-1CBE,which is better than some reported plant extracts under the similar environment. The adsorption of CBE molecules is found to obey the Langmuir adsorption isotherm. Some thermodynamic and kinetic parameters for the adsorption process, such as the adsorption equilibrium constant(K), free energy of adsorption(ΔG ads), activation energy of corrosion reaction(E a) and the heat of adsorption(Q ads), are calculated and discussed. SEM and Raman microscopy analysis also demonstrate the formation of a CBE inhibition film on the metal surface.展开更多
Co30Cr8W1.6C3Ni1.4Si coatings were fabricated on Ti6Al4V alloy using a laser thermal spraying(LTS).The surface and cross-section morphologies,phases and bonding strength of obtained coatings were investigated using sc...Co30Cr8W1.6C3Ni1.4Si coatings were fabricated on Ti6Al4V alloy using a laser thermal spraying(LTS).The surface and cross-section morphologies,phases and bonding strength of obtained coatings were investigated using scanning electronic microscopy(SEM),X-ray diffraction(XRD),and scratch test,respectively.The effects of laser power on the coefficients of friction(COFs)and corrosive-wear behaviors of Co30Cr8W1.6C3Ni1.4Si coatings were investigated using a wear tester in 3.5%NaCl solution,and the electrochemical corrosion performance was analyzed using an electrochemical workstation.The experimental results show that the Co30Cr8W1.6C3Ni1.4Si coating is bonded with the substrate in the metallurgical form,and the bonding strengths of Co30Cr8W1.6C3Ni1.4Si coatings fabricated at the laser power of 1000,1200,and 1400 W are 76.5,56.5,and 55.6 N,respectively.The average COFs of Co30Cr8W1.6C3Ni1.4Si coatings fabricated at the laser power of 1000,1200,and 1400 W are 0.769,0.893,and 0.941,respectively;and the corresponding wear rates are 0.267×105,0.3178×105,and 0.325×105μm3/Nm,respectively,which increases with the increase of laser power,the wear mechanism is primarily abrasive wear.The corrosion potential of Co30Cr8W1.6C3Ni1.4Si coatings fabricated at the laser power of 1000,1200,and 1400 W is-0.05,-0.25,and-0.31 V,respectively,higher than-0.45 V of substrate which enhances the electrochemical corrosion resistance of substrate.展开更多
This investigation was aimed at evaluating the effectiveness of corrosion inhibitors in increasing the chloride threshold value for steel corrosion. Three types of corrosion inhibitors, calcium nitrite (Ca(NO2)2),...This investigation was aimed at evaluating the effectiveness of corrosion inhibitors in increasing the chloride threshold value for steel corrosion. Three types of corrosion inhibitors, calcium nitrite (Ca(NO2)2), zinc oxide (ZnO), and N,N'-dimethylaminoethanol (DMEA), which respectively represented the anodic inhibitor, cathodic inhibitor, and mixed inhibitor, were chosen. The experiment was carried out in a saturated calcium hydroxide (Ca(OH)2) solution to simulate the electrolytic environment of concrete. The inhibitors were initially mixed at different levels, and then chloride ions were gradually added into the solution in several steps. The open-circuit potential (Ecorr) and corrosion current density (lcorr) determined by electrochemical impedance spectra (EIS) were used to identify the initiation of active corrosion, thereby determining the chloride threshold value. It was found that although all the inhibitors were effective in decreasing the corrosion rate of steel reinforcement, they had a marginal effect on increasing the chloride threshold value.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52001142,52005228,51801218,51911530211,51905110)Young Scientists Sponsorship Program by CAST(Grant No.2022QNRC001).
文摘This study employs advanced electrochemical and surface characterization techniques to investigate the impact of electrochemical hydrogen charging on the corrosion behavior and surface film of the Ti-6Al-4V alloy.The findings revealed the formation ofγ-TiH andδ-TiH_(2) hydrides in the alloy after hydrogen charging.Prolonging hydrogen charging resulted in more significant degradation of the alloy microstructure,leading to deteriorated protectiveness of the surface film.This trend was further confirmed by the electrochemical measurements,which showed that the corrosion resistance of the alloy progressively worsened as the hydrogen charging time was increased.Consequently,this work provides valuable insights into the mechanisms underlying the corrosion of Ti-6Al-4V alloy under hydrogen charging conditions.
基金Supported by the National Natural Science Foundation of China (No.20576108).
文摘Corrosion and electrochemical behavior of 316L stainless steel was investigated in the presence of aerobic iron-oxidizing bacteria (IOB) and anaerobic sulfate-reducing bacteria (SRB) isolated from cooling water systems in an oil refinery using electrochemical measurement, scanning electron microscopy (SEM) and energy dispersive atom X-ray analysis(EDAX). The results show the corrosion potential and pitting potential of 316L stainless steel decrease distinctly in the presence of bacteria, in comparison with those observed in sterile medium under the same exposure time. SEM morphologies have shown that 316L stainless steel reveals no signs of pitting attack in the sterile medium. However, micrometer-scale corrosion pits were observed on 316L stainless steel surface in the presence of bacteria. The presence of SRB leads to higher corrosion rates than IOB. The interactions between the stainless steel surface, abiotic corrosion products, and bacterial cells and their metabolic products increased the corrosion damage degree of the passive film and accelerated pitting propagation.
基金The authors are grateful for the financial supports from the National Key R&D Program of China(2017YFB1104100)the New Young Teachers Initiation Plan,China(18X100040027)+1 种基金the National Natural Science Foundation of China(51971142)the China Postdoctoral Science Foundation(19Z102060057).
文摘Ti−6Al−4V alloy was fabricated via selective laser melting(SLM)to improve its corrosion resistance for implant.The microstructure and electrochemical corrosion behavior were investigated using scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),electrochemical test and contact angle test.It can be found that the as-selective laser melted(as-SLMed)Ti−6Al−4V alloys showβcolumnar microstructure in building direction and nearly circular checkerboard microstructure in scanning direction,while the wrought and wrought+HT samples exhibit equiaxed microstructure.The as-SLMed Ti−6Al−4V alloy exhibits better corrosion resistance than the wrought and wrought+HT samples due to hydrophobicity,high grain boundary density and uniform distribution of alloying elements in simulated artificial saliva at 37℃.
基金Project(2016YFB1100101)supported by the National Key Research and Development Program of China。
文摘Al7075 alloy is a typical aviation aluminum with good mechanical properties and anodic oxidation effect.Laser engineered net shaping technology has unique advantages in the integrated forming of high-performance large aircraft structural parts.The manufacturing of 7075 aluminum alloy structural parts by laser engineered net shaping technology has become an important development direction in the future aerospace field.Electrochemical corrosion resistance of aluminum alloys is of vital importance to improve reliability and life-span of lightweight components.A comparative study on microstructure and anti-corrosion performance of Al7075 alloy prepared by laser additive manufacturing and forging technology was conducted.There are hole defects in LENS-fabricated Al7075 alloy with uniformly distributedηphase.No defects are observed in Al7075 forgings.The large S phase particles and small ellipsoidalηphase particles are found in Al matrix.The corrosion mechanisms were revealed according to the analysis of polarization curves and corrosion morphology.It was found that compared with that prepared by forgings,the additive manufactured samples have lower corrosion tendency and higher corrosion rate.Corrosion occurred preferentially at the hole defects.The incomplete passivation film at the defects leads to the formation of a local cell composed of the internal Al,corrosion solution and the surrounding passive film,which further aggravates the corrosion.
基金Project(51074110) supported by the National Natural Science Foundation of ChinaProject(10GGZD080GX-268) supported by Chengdu Science and Technology Program, China
文摘The electrochemical corrosion behavior of Ti(C,N)-based cermets with different Mo2C additions was investigated in freely aerated 10% H2SO4 and potentiodynamic polarization of all the materials was conducted from -0.5 to 1.5 V. There are two passive regions for all polarization curves. The first should be attributed to passive film formation due to Ti(C,N), while the second may be due to the presence of Ni. Corrosion current density increases with M02C content increasing, from 2.06×10^-3 to 6.70×10^-3 mA/cm2. It is indicated that the corrosion resistance of Ti(C,N)-based cermets decreases with the increase of Mo2C addition. A skeleton of Ti(C,N) gains is observed after dissolution of Ni. The inner rim of cermets, rich in Mo2C, is corroded along with Ni binder and is more serious with the increase of Mo2C content. The secondary carbide Mo2C can be oxidized and dissolved in sulphuric acid.
文摘Electrochemical techniques of the corrosion measurements of reinforcing steeI in concrete have been evaluated. These techniques include half-cell potential measurements, impressed voltage method, impressed current method and potentiostatic polarization technique. The results of corrosion behaviour of the steel in both 5%NaCl and 5%MgSO4 show that each electrochemical technique provides some information about the condition of the steel bar or the corrosivity of the environment being evaluated, yet none provides a complete data regarding the corrosion resistance of reinforcing steel in aggressive media
基金Project(IRT_14R48)supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of ChinaProjects(51271158,51272158,51401175,51504213)supported by the National Natural Science Foundation of China+2 种基金Project([2009]17)supported by the Changjiang Scholar Incentive Program,ChinaProject(CX2015B224)supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2015WK3021)supported by the Hunan Provincial Key Research Program,China
文摘Porous Al-Mg alloys with different nominal compositions were successfully fabricated via elemental powder reactive synthesis, and the phase composition, pore structure, and corrosion resistance were characterized with X-ray diffractometer, scanning electron microscope and electrochemical analyzer. The volume expansion ratio, open porosity and corrosion resistance in 3.5%(mass fraction) Na Cl aqueous solution of the alloys increase at first and then decrease with the increase of Mg content. The maxima of volume expansion ratio and open porosity are 18.3% and 28.1% for the porous Al-56%Mg(mass fraction) alloy, while there is the best corrosion resistance for the porous Al-37.5% Mg(mass fraction) alloy. The pore formation mechanism can be explained by Kirkendall effect, and the corrosion resistance can be mainly affected by the phase composition for the porous Al-Mg alloys. They would be of the potential application for filtration in the chloride environment.
基金financially supported by the Major State Basic Research Development Program of China (No. 2014CB643300)
文摘The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN(M152), provide a basis for the optimization of material selection, and prevent the occurrence of failure. Moreover, the mechanism was investigated using the mass loss method, polarization curves, electrochemical impedance spectroscopy(EIS), stereology microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy(EDS). The results show that M152 steel suffers severe corrosion, especially pitting corrosion, in a high-salt-spray environment. In the early stage of the experiment, the color of the corrosion products was mainly orange. The products then gradually evolved into a dense, brown substance, which coincided with a decrease of corrosion rate. Correspondingly, the EIS spectrum of M152 in the late test also exhibited three time constants and presented Warburg impedance at low frequencies.
基金supported by the grant from National Key Research and Development Program of China (Grant No.2021YFF0602005)National Natural Science Foundation of China (No.51678135),which are gratefully acknowledged.
文摘In this paper,a numerical model of fretting fatigue analysis of cablewire and the fretting fatigue damage constitutive model considering the multi-axis effect were established,and the user material subroutine UMAT was written.Then,the constitutive model of wear morphology evolution of cable wire and the constitutive model of pitting evolution considering the mechanical-electrochemical effect were established,respectively.The corresponding subroutines UMESHMOTION_Wear and UMESHMOTION_Wear_Corrosion were written,and the fretting fatigue lifewas further predicted.The results showthat the numerical simulation life obtained by the programin this paper has the same trend as the tested one;the error is only about 0.7%in the medium life area;When the normal contact force increases from 120 to 240 N,the fretting life of cable wire decreases by 25%;When the evolution of wear morphology and corrosion effect are considered simultaneously,the depth of the wear zone exceeds 0.08mm after 600,000 loads,which ismuch larger than 0.04 mmwhen only the evolution of wear morphology is considered.When the evolution of wear morphology and corrosion morphology is considered simultaneously,the damage covers the whole contact surface after 300,000 loads,and the penetrating damage zone forms after 450,000 loads,which is obviously faster than that when only the wearmorphology evolution is considered.Themethod proposed in this paper can provide a feasible numerical simulation scheme for the visualization of the damage process and accurate life prediction of cable-supported bridges.
基金Funded by Key Scientific Research Projects Plan of Henan Higher Education Institutions(No.19A460025)National Natural Science Foundation of China(No.51809127)。
文摘Sorbitol,triethanolamine,sodium benzoate,boric acid,and sodium carbonate were mixed to prepare a waterborne rust inhibitor.A temperature and humidity accelerated corrosion test was applied to investigate the corrosion behaviour of waterborne rust inhibitor coated Q235 steel and original Q235 steel,which was carried out in a temperature and humidity test chamber(WSHW-1000)at a temperature of 80℃and humidity of 95%.Compared with the original Q235,waterborne rust inhibitor coated Q235 has better resistance to corrosion in hot and humid ambient conditions.Electrochemical impedance spectroscopy and potentiodynamic polarization were measured with a three-electrode cell in 3.5%NaCl aqueous solution on a CHI760E potentiostat/galvanostat.Molecular dynamics was simulated to verify the synergistic corrosion inhibitory mechanism of sodium carbonate and triethanolamine.The test shows that the prepared waterborne rust inhibitor can reduce the tendency of Q235 to corrosion and can also effectively reduce the corrosion rate.
基金Projects(21073162,21273199) supported by the National Natural Science Foundation of ChinaProject(GCTKF2012013) supported by the Science and Technology Bureau of Jiaxing Municipality and the State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology,China
文摘The corrosion behavior of 907 steel under thin electrolyte layer(TEL) has been investigated by means of cathodic polarization curve measurement, electrochemical impedance spectroscopy(EIS) and scanning electron microscopy(SEM). The results show that the cathodic diffusion current density presents the variation trend of initial increase and subsequent decrease with the decrease of TEL thickness, and the maximum deposits at 58 μm. The cotangent-hyperbolic impedance(O) is rationally first introduced to study the diffusion process of the reactants through the corrosion products layer with many permeable holes. The initial corrosion rate of 907 steel under different TEL thickness increases with the decrease of TEL thickness except that of 104 μm,whereas the corrosion rate after long time corrosion can be ranked as 104 μm﹥402 μm﹥198 μm﹥301 μm﹥bulk solution.
基金Funded by the National Key Technology R&D Program of China(Nos.2011BAE22B01 and 2011BAE22B06)
文摘Corrosion of Mg–Y alloy was studied using electrochemical evaluations, immersion tests and SEM observations. Corrosion mechanisms of Mg-(0.25 and 2.5) Y alloy and Mg-(5, 8, and 15) Y alloy were uniform corrosion and pitting corrosion respectively, and the content of Mg_(24)Y_5 phases determined its effect acting as cathode to accelerate the corrosion or corrosion barrier to inhibit the corrosion. Corrosion resistance of Mg-(0.25, 2.5, 5, 8, and 15) Y alloys was as follows: Rt(Mg-0.25Y) 〈 Rt(Mg-8Y) 〈 Rt(Mg-15Y) 〈 Rt(Mg-5Y) 〈 Rt(Mg-2.5Y). Y could significantly improve the corrosion resistance of the Mg-Y alloy, but the excess of Y deteriorated the corrosion resistance of the Mg-Y alloy. The optimum content of Y in the studied alloys was 2.5%.
基金National Natural Science Foundation of China(52071261)。
文摘The electrochemical corrosion,wear,and tribocorrosion behavior of the novel Ti-19Zr-10Nb-1Fe alloy were investigated.The electrochemical corrosion analysis results show that the corrosion resistance of the Ti-19Zr-10Nb-1Fe alloy is better than that of the Ti-6Al-4V alloy under the test conditions in this research.Compared with the static electrochemical corrosion,the corrosion resistance of Ti-19Zr-10Nb-1Fe alloy during tribocorrosion decreases significantly,because the wear accelerates corrosion.The wear volume of Ti-19Zr-10Nb-1Fe alloy is increased with the increase in applied load whether the electrochemical corrosion occurs or not.Due to the acceleration effect of electrochemical corrosion,the wear volume caused by electrochemical corrosion is larger than that without electrochemical corrosion.The results of Wa/Wc are much greater than 10,indicating that during the tribocorrosion process,the material loss caused by mechanical wear is much larger than that caused by electrochemical corrosion.Through SEM observation of the wear morphologies of Ti-19Zr-10Nb-1Fe alloy after tribocorrosion,it can be inferred that the micro-abrasion is the main wear mechanism.The above results show that during the tribocorrosion process,the corrosion accelerates wear,and the wear accelerates corrosion.
文摘Duplex stainless steels(DSSs)used in subsea structures and desalination industries require high corrosion and erosion resistance as well as excellent mechanical properties.The newly introduced cast duplex grade ASTM A8907 A has a unique composition and is expected to have a much better resistance to corrosion and erosion compared with the super-duplex grades 5 A and 6 A.This work is a comparative study of the mechanical properties,corrosion,and erosion-corrosion resistance of super-duplex grades 5 A and 6 A and the hyper-duplex grade 7 A.The three DSSs exhibited equiaxial austenite islands in the ferrite matrix and balanced phase ratios.The hardness of the grade 7 A was nearly 15%higher than those of the super-duplex grades,which is attributed to the effect of the higher contents of W and Mn in 7 A.The impact toughness of grade 7 A was found to be lower than those of the super-duplex grades due to the carbide precipitation resulting from the partial substitution of Mo with W.The oxide layer strengthening effect of rare earth elements and the higher pitting resistance equivalent number(PREN)of grade7 A resulted in higher corrosion resistance.The harder and more passive grade 7 A showed a 35%lower material loss during erosion-corrosion.
基金the Planned Science and Technology Project of Hunan Province, China (2008FJ3052)the Scientific Research Fundation of Hunan Provincial Education Department, China (08C460)the Youth Foundation Hunan Institute of Humanities, Science and Technology, China (2008QN016)
文摘The influence of crystallization on the corrosion behavior of Al86Ni6La6Cu2 amorphous alloy in 0.01 M NaCl solution was investigated by electrochemical techniques. The Al86Ni6La6Cu2 amorphous alloy was prepared by melt spinning method, and the partially and fully crystallized states were obtained by controlled annealing. The evolution of the crystallization process after annealing was characterized by differential scanning calorimeter (DSC) and X-ray diffraction. The polarization curves revealed that all samples exhibited spontaneous passivation. The fully amorphous Al86Ni6La6Cu2 sample exhibited the best corrosion resistance. Partial and full crystallization resulted in deterioration of corrosion resistance in comparison with that of the as-spun amorphous state.
基金Projects(2011BAE22B01,2011BAE22B06)supported by the National Key Technology R&D Program,China
文摘This paper studied the influence of aging treatment on the corrosion behavior and mechanism of Mg-Y alloys with different Y content through corrosion mass loss test, electrochemical test and corrosion morphologies observation. Results show that the peak-aging times of Mg-(0.25, 2.5, 5, 8 and 15) Y alloys at 250 ℃ were 4, 6, 10, 12 and 16 h. The aging treatment reduced the corrosion resistance of Mg-Y alloys, and the corrosion resistance of Mg-Y alloys became worse with increasing of the aging time. The change magnitude of the open circuit potentials for Mg-(0.25, 2.5)Y alloys was greater than that of Mg-(5, 8 and 15)-Y alloys. The polarization curves of Mg (0.25, 2.5, 5, 8 and 15) Y alloys had the similar shape after aging treatment, and the slopes of the anodic branch were greater than those of the cathodic branches. After aging treatment, the corrosion modes of Mg-0.25Y and Mg-(2.5, 5, 8 and 15) Y alloys were uniform corrosion and pitting corrosion with small local deep corrosion.
基金financial support provided by World Bank Robert S.Mc Namara Fellowship Program 2015 to carry out this research abroad
文摘Extracts of elephant grass (Penniseturn purpureum) blended with some intensifier halides like ammonium chloride (AMC) and potassium iodide (PTI) were investigated as corrosion inhibitor for mild steel. The corrosion process was monitored in 3.5% HCI by mass loss and electrochemical techniques at 30, 40, 50, 60 and 90 ℃. Addition of AMC and PTI increased the inhibition efficiency with the highest inhibition efficiency obtained with PTI blend- ed extract. The blends behaved as mixed type inhibitors and were spontaneously adsorbed on mild steel surface in exothermic nature. Synergistic parameters of the intensifier ions revealed cooperative effect. Kinetic data treatment indicated increase in energy barrier by intensifier ions. The results demonstrate that elephant grass extract blended with halide ions can act as alternative ecofriendly inhibitor for mild steel at elevated temperatures.
基金Supported by the National Natural Science Foundation of China(51101066)
文摘The corrosion inhibition effect of Capsella bursa-pastoris extracts(CBE) for Q235 carbon steels in 1 mol·L-1hydrochloric acid solution was studied using electrochemical methods, environmental scanning electron microscopy(SEM) and Raman microscopy analysis. The polarization plots indicate that CBE serves as an effective, mixedtype inhibitor. Linear polarization resistance shows that increasing CBE concentration and temperature results in increased inhibition ef ficiency. The highest inhibition ef ficiency can reach 97% when adding 60 mg·L-1CBE,which is better than some reported plant extracts under the similar environment. The adsorption of CBE molecules is found to obey the Langmuir adsorption isotherm. Some thermodynamic and kinetic parameters for the adsorption process, such as the adsorption equilibrium constant(K), free energy of adsorption(ΔG ads), activation energy of corrosion reaction(E a) and the heat of adsorption(Q ads), are calculated and discussed. SEM and Raman microscopy analysis also demonstrate the formation of a CBE inhibition film on the metal surface.
基金Funded by the Key Research and Development Project of Jiangsu Province(BE2016052)。
文摘Co30Cr8W1.6C3Ni1.4Si coatings were fabricated on Ti6Al4V alloy using a laser thermal spraying(LTS).The surface and cross-section morphologies,phases and bonding strength of obtained coatings were investigated using scanning electronic microscopy(SEM),X-ray diffraction(XRD),and scratch test,respectively.The effects of laser power on the coefficients of friction(COFs)and corrosive-wear behaviors of Co30Cr8W1.6C3Ni1.4Si coatings were investigated using a wear tester in 3.5%NaCl solution,and the electrochemical corrosion performance was analyzed using an electrochemical workstation.The experimental results show that the Co30Cr8W1.6C3Ni1.4Si coating is bonded with the substrate in the metallurgical form,and the bonding strengths of Co30Cr8W1.6C3Ni1.4Si coatings fabricated at the laser power of 1000,1200,and 1400 W are 76.5,56.5,and 55.6 N,respectively.The average COFs of Co30Cr8W1.6C3Ni1.4Si coatings fabricated at the laser power of 1000,1200,and 1400 W are 0.769,0.893,and 0.941,respectively;and the corresponding wear rates are 0.267×105,0.3178×105,and 0.325×105μm3/Nm,respectively,which increases with the increase of laser power,the wear mechanism is primarily abrasive wear.The corrosion potential of Co30Cr8W1.6C3Ni1.4Si coatings fabricated at the laser power of 1000,1200,and 1400 W is-0.05,-0.25,and-0.31 V,respectively,higher than-0.45 V of substrate which enhances the electrochemical corrosion resistance of substrate.
基金supported by the National Natural Science Foundation of China (Grants No. 51278168 and51278167)the China Postdoctoral Science Foundation Funded Project (Grant No. 20100481082)+3 种基金the China Postdoctoral Science Foundation Special Funded Project (Grant No. 201104544) the Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1002019B)the Qing Lan Projectthe Opening Project of Shenzhen Durability Center for Civil Engineering, Shenzhen University (Grant No.SZDCCE11-03)
文摘This investigation was aimed at evaluating the effectiveness of corrosion inhibitors in increasing the chloride threshold value for steel corrosion. Three types of corrosion inhibitors, calcium nitrite (Ca(NO2)2), zinc oxide (ZnO), and N,N'-dimethylaminoethanol (DMEA), which respectively represented the anodic inhibitor, cathodic inhibitor, and mixed inhibitor, were chosen. The experiment was carried out in a saturated calcium hydroxide (Ca(OH)2) solution to simulate the electrolytic environment of concrete. The inhibitors were initially mixed at different levels, and then chloride ions were gradually added into the solution in several steps. The open-circuit potential (Ecorr) and corrosion current density (lcorr) determined by electrochemical impedance spectra (EIS) were used to identify the initiation of active corrosion, thereby determining the chloride threshold value. It was found that although all the inhibitors were effective in decreasing the corrosion rate of steel reinforcement, they had a marginal effect on increasing the chloride threshold value.