A kind of environmental friendly anodizing routine for AZ91D magnesium alloy,based on an alkaline borate-potassium acid phthalate(KAP) electrolyte,was studied.The effect of KAP on the properties of the anodized film...A kind of environmental friendly anodizing routine for AZ91D magnesium alloy,based on an alkaline borate-potassium acid phthalate(KAP) electrolyte,was studied.The effect of KAP on the properties of the anodized film was investigated by scanning electron microscopy(SEM),X-ray diffraction(XRD),energy dispersive spectrometry(EDS),potentiodynamic polarization and electrochemical impedance spectroscopy(EIS),respectively.The results showed that the anodizing process,surface morphology,thickness,phase structure and corrosion resistance of the anodized film were strongly dependent on the concentration of KAP.In the presence of adequate KAP,a compact and smooth anodized film with excellent corrosion resistance was obtained.展开更多
An anodizing process, based on environmental friendly electrolyte solutions has been studied on AZ 91 magnesium alloys by using three types of electrolytes: the first is based on sodium silicate, the second on sodium ...An anodizing process, based on environmental friendly electrolyte solutions has been studied on AZ 91 magnesium alloys by using three types of electrolytes: the first is based on sodium silicate, the second on sodium hydroxide-boric acid-borax and the third on sodium silicate- potassium hydroxide-sodium carbonate-sodium tetra borate. A pretreatment including fluoride activation was applied before the anodizing process. It was found that the anodic film thickness increases as current density or anodizing voltage increases. It is also increased with deposition time until the deposition stops due to the formation of a thick anodic film. Optimization of the anodizing conditions - current density and deposition time- was made for each electrolyte. Characterization of anodizing layer was achieved by determination of surface morphology, microstructure, phase analysis, coat thickness, adhesion and corrosion resistance. In all cases, excellent adhesion and corrosion resistance was obtained. A corrosion efficiency ranging from 94% to 97% was reached;the highest value corresponding to the third electrolyte.展开更多
The function of a corrosion inhibitor in drilling mud compositions is the corrosion protection of the equipment involved in drilling operations. Many compositions involve environmentally several products such as fatty...The function of a corrosion inhibitor in drilling mud compositions is the corrosion protection of the equipment involved in drilling operations. Many compositions involve environmentally several products such as fatty amines of high molecular weight, polyoxylated amines, amides, imidazolines, nitrogen heterocyclic products, etc. The potential advantages of the use of silicates are the effective protection of carbon steel, especially in aerated saline fluids, low costs and non-aggressive behavior to environment. Gravimetric and electrochemical tests were carried out using an aerated solution of 3.5% NaCl and the addition of sodium silicate (Na<sub>2</sub>SiO<sub>3</sub>·9H<sub>2</sub>O) as a corrosion inhibitor at concentrations of 250 to 2000 mg/L. The efficiencies of the corrosion protection of carbon steel using silicate concentrations greater than 1250 mg/L were greater than 92%.展开更多
Pipelines are system of pipes designed to transport liquids, gases or solid/ liquid mixtures over long distances. Some are used for domestic, household and sewage purposes. Others are buried underground or submerged i...Pipelines are system of pipes designed to transport liquids, gases or solid/ liquid mixtures over long distances. Some are used for domestic, household and sewage purposes. Others are buried underground or submerged in water for transportation of natural oil and gas (O & G) products. In this work, the specimens had to be kept in a workable state and steps were taken to prepare each specimen: all cuts and sheared edges were ground out to prevent them from becoming sites for preferential attack. The finishing of the specimen surface with grit abrasive paper (sand paper) and rinsing of the specimens in distilled water were done. Then degreasing of specimen in acetone and air-dried were carried out. Upon drying, the specimens were immediately weighed to obtain their initial weights. Twelve specimens were used for the test as follows: 6 Aluminum (Al);and 6 mild steel (MS) samples. With a 2 M concentration of Vernomia Amydalina (VA) extract solution, the MS and Al samples were immersed in different plastic containers containing 400 ml of seawater with pH value of 7.25 with no (0%) inhibitor added to it. A 5% (400 ml) of the VA solution was poured into the measuring cylinder for each sample-Al and MS. The specimens were suspended by the strings and completely immersed in the different percentage test media. The same procedure was carried out for each of the different percentages, 10%, 15%, 20%, and 25% and a total of 12 solutions were set up. The experimental procedure used was that seawater of 7.25 pH was obtained from Abonnema water front of Rivers State. At the end of every week (168 hours), the specimens were removed from the corrosive media. Observation and recording of appearance of the specimen noting sites were done. Cleanings of specimen with white handkerchief or tissue paper were carried out and washing of specimen with distilled water, scrubbing of specimen with a soft brush and dipping the specimen into acetone after washing, it was removed to air-dry and weighed. It is observed that optimum inhibition of coupons was obtained between 15% - 25% of VA solution during the first four weeks of testing. At the fifth week the inhibitor was gradually losing its effectiveness. This means that more inhibitor need be added at regular intervals to sustain the effectiveness of the inhibitor.展开更多
In the process of exploration and development of oil and gas fields, the acidic environment of oil reservoir, production and transport processes cause corrosion of pipelines and equipment, resulting in huge economic l...In the process of exploration and development of oil and gas fields, the acidic environment of oil reservoir, production and transport processes cause corrosion of pipelines and equipment, resulting in huge economic losses and production safety risks. Corrosion inhibitors were widely used in oil industry because of simple operation process and economical. In this study, three environmentally friendly corrosion inhibitors were synthesized based on the natural polysaccharide chitosan. Corrosion inhibition of three dendritic chitosan derivatives (We name them BH, CH and DH) on mild steel in 1 mol/L HCl solution with natural ventilation system was evaluated by weight loss experiment, electrochemical analysis and surface morphology characterization. The experimental results showed that when the three dendritic chitosan derivatives added in the corrosive medium were 500 mg L^(−1), the corrosion inhibition efficiencies were all more than 80%. Based on quantum chemical calculation, inhibition mechanisms of three dendritic chitosan derivatives were investigated according to molecular structures. The results showed that the benzene ring, Schiff base and N atom contained in the molecule were the active centers of electron exchange, which were more likely to form a film on the carbon steel surface, thereby slowing or inhibiting corrosion. The results also predicted the corrosion inhibition effect BH > DH > CH, which was consistent with the experimental conclusion.展开更多
A new type of corrosion inhibitor and fog suppressor composed of Nitrogen-containing alkaloid,water-soluble butadiene lower polymer, and inorganic electrolyte has been investigated by gravimetric and electrochemical m...A new type of corrosion inhibitor and fog suppressor composed of Nitrogen-containing alkaloid,water-soluble butadiene lower polymer, and inorganic electrolyte has been investigated by gravimetric and electrochemical method. Effects or this chemicals on pickling rate and hydrogen penetration into iron and steel material in 50~150 g/L HCI or/and H2SO4 solutions at 20~70℃ temperature were examined. The amount of acid fog escaping from the surface of air-liquid was determined by chemical titration. The results indicate that the efficiency of inhibition and suppression depends on film properties by which mean a barrier film on the interface of bare mild steel/solution or an unsolvable liquid membrane as hydrophibic effect.In present work the film-forming mechanism by in situ and chemistry-mechanics effect is also discussed.展开更多
The use of Crocin, derived from the flowers of Crocus sativus, is investigated as corrosion inhibitor for the AA1050, AA5083, AA5754 and AA6082 aluminum alloys in chloride ions environment. Aluminum and aluminum alloy...The use of Crocin, derived from the flowers of Crocus sativus, is investigated as corrosion inhibitor for the AA1050, AA5083, AA5754 and AA6082 aluminum alloys in chloride ions environment. Aluminum and aluminum alloys are subjected to corrosion in the aggressive environment of chlorides, so several green corrosion inhibitors, mostly of plant origin, with minimum impact on health and the environment have been examined. In this study, the inhibition efficiency of 1.25 mM Crocin in a 0.01 M NaCl corrosive solution was assessed via electrochemical corrosion techniques and gravimetric mass loss measurements of the aluminum alloys. The surface of the specimens was examined using Scanning Electron Microscopy, Energy Dispersive Spectroscopy, Stereomicroscopy and Glossiness measurements. Experimental results reveal the protective anticorrosive action of Crocin for all aluminum alloys in the sodium chloride medium.展开更多
Inorganic scale deposits are a major water-related problem encountered in producing oil and gas wells. The harshness of scale deposits is dependent on the field operating conditions. Scale deposits can vary from mild ...Inorganic scale deposits are a major water-related problem encountered in producing oil and gas wells. The harshness of scale deposits is dependent on the field operating conditions. Scale deposits can vary from mild scaling tendencies to extreme. In general, the scale deposit will cause a reduction in formation pores, declining productivity and eventually blockage of the wellbore and hence unexpected downtime if it is allowed to persevere. To overcome this, the productivity of an oil and gas well is ensured by handling scale deposits via removal or prevention methods. Scale prevention is the best and cost-e ective method for handling scale deposits that ensures production continuity. Inhibition through 'threshold' scale inhibitor treatment is the most common method that is proven to prevent or reduce likely deposits. This paper examines the art of synthetic scale inhibitors, in particular, threshold scale inhibitors in oil and gas production. It discusses the chemistry of those inhibitors, inhibition mechanisms, treatment methods and key properties for their applications. It also highlights the chemistry of the synthetic routes often used to produce them in the laboratory and/or industry. Finally, it highlights the environmental concerns for the applicability of threshold scale inhibitors.展开更多
基金Projects (50771092,21073162) supported by the National Natural Science Foundation of ChinaProject (08JC1421600) supported by the Science and Technology Commission of Shanghai,ChinaProject (2008AZ2018) supported by the Science and Technology Bureau of Jiaxing,China
文摘A kind of environmental friendly anodizing routine for AZ91D magnesium alloy,based on an alkaline borate-potassium acid phthalate(KAP) electrolyte,was studied.The effect of KAP on the properties of the anodized film was investigated by scanning electron microscopy(SEM),X-ray diffraction(XRD),energy dispersive spectrometry(EDS),potentiodynamic polarization and electrochemical impedance spectroscopy(EIS),respectively.The results showed that the anodizing process,surface morphology,thickness,phase structure and corrosion resistance of the anodized film were strongly dependent on the concentration of KAP.In the presence of adequate KAP,a compact and smooth anodized film with excellent corrosion resistance was obtained.
文摘An anodizing process, based on environmental friendly electrolyte solutions has been studied on AZ 91 magnesium alloys by using three types of electrolytes: the first is based on sodium silicate, the second on sodium hydroxide-boric acid-borax and the third on sodium silicate- potassium hydroxide-sodium carbonate-sodium tetra borate. A pretreatment including fluoride activation was applied before the anodizing process. It was found that the anodic film thickness increases as current density or anodizing voltage increases. It is also increased with deposition time until the deposition stops due to the formation of a thick anodic film. Optimization of the anodizing conditions - current density and deposition time- was made for each electrolyte. Characterization of anodizing layer was achieved by determination of surface morphology, microstructure, phase analysis, coat thickness, adhesion and corrosion resistance. In all cases, excellent adhesion and corrosion resistance was obtained. A corrosion efficiency ranging from 94% to 97% was reached;the highest value corresponding to the third electrolyte.
文摘The function of a corrosion inhibitor in drilling mud compositions is the corrosion protection of the equipment involved in drilling operations. Many compositions involve environmentally several products such as fatty amines of high molecular weight, polyoxylated amines, amides, imidazolines, nitrogen heterocyclic products, etc. The potential advantages of the use of silicates are the effective protection of carbon steel, especially in aerated saline fluids, low costs and non-aggressive behavior to environment. Gravimetric and electrochemical tests were carried out using an aerated solution of 3.5% NaCl and the addition of sodium silicate (Na<sub>2</sub>SiO<sub>3</sub>·9H<sub>2</sub>O) as a corrosion inhibitor at concentrations of 250 to 2000 mg/L. The efficiencies of the corrosion protection of carbon steel using silicate concentrations greater than 1250 mg/L were greater than 92%.
文摘Pipelines are system of pipes designed to transport liquids, gases or solid/ liquid mixtures over long distances. Some are used for domestic, household and sewage purposes. Others are buried underground or submerged in water for transportation of natural oil and gas (O & G) products. In this work, the specimens had to be kept in a workable state and steps were taken to prepare each specimen: all cuts and sheared edges were ground out to prevent them from becoming sites for preferential attack. The finishing of the specimen surface with grit abrasive paper (sand paper) and rinsing of the specimens in distilled water were done. Then degreasing of specimen in acetone and air-dried were carried out. Upon drying, the specimens were immediately weighed to obtain their initial weights. Twelve specimens were used for the test as follows: 6 Aluminum (Al);and 6 mild steel (MS) samples. With a 2 M concentration of Vernomia Amydalina (VA) extract solution, the MS and Al samples were immersed in different plastic containers containing 400 ml of seawater with pH value of 7.25 with no (0%) inhibitor added to it. A 5% (400 ml) of the VA solution was poured into the measuring cylinder for each sample-Al and MS. The specimens were suspended by the strings and completely immersed in the different percentage test media. The same procedure was carried out for each of the different percentages, 10%, 15%, 20%, and 25% and a total of 12 solutions were set up. The experimental procedure used was that seawater of 7.25 pH was obtained from Abonnema water front of Rivers State. At the end of every week (168 hours), the specimens were removed from the corrosive media. Observation and recording of appearance of the specimen noting sites were done. Cleanings of specimen with white handkerchief or tissue paper were carried out and washing of specimen with distilled water, scrubbing of specimen with a soft brush and dipping the specimen into acetone after washing, it was removed to air-dry and weighed. It is observed that optimum inhibition of coupons was obtained between 15% - 25% of VA solution during the first four weeks of testing. At the fifth week the inhibitor was gradually losing its effectiveness. This means that more inhibitor need be added at regular intervals to sustain the effectiveness of the inhibitor.
文摘In the process of exploration and development of oil and gas fields, the acidic environment of oil reservoir, production and transport processes cause corrosion of pipelines and equipment, resulting in huge economic losses and production safety risks. Corrosion inhibitors were widely used in oil industry because of simple operation process and economical. In this study, three environmentally friendly corrosion inhibitors were synthesized based on the natural polysaccharide chitosan. Corrosion inhibition of three dendritic chitosan derivatives (We name them BH, CH and DH) on mild steel in 1 mol/L HCl solution with natural ventilation system was evaluated by weight loss experiment, electrochemical analysis and surface morphology characterization. The experimental results showed that when the three dendritic chitosan derivatives added in the corrosive medium were 500 mg L^(−1), the corrosion inhibition efficiencies were all more than 80%. Based on quantum chemical calculation, inhibition mechanisms of three dendritic chitosan derivatives were investigated according to molecular structures. The results showed that the benzene ring, Schiff base and N atom contained in the molecule were the active centers of electron exchange, which were more likely to form a film on the carbon steel surface, thereby slowing or inhibiting corrosion. The results also predicted the corrosion inhibition effect BH > DH > CH, which was consistent with the experimental conclusion.
文摘A new type of corrosion inhibitor and fog suppressor composed of Nitrogen-containing alkaloid,water-soluble butadiene lower polymer, and inorganic electrolyte has been investigated by gravimetric and electrochemical method. Effects or this chemicals on pickling rate and hydrogen penetration into iron and steel material in 50~150 g/L HCI or/and H2SO4 solutions at 20~70℃ temperature were examined. The amount of acid fog escaping from the surface of air-liquid was determined by chemical titration. The results indicate that the efficiency of inhibition and suppression depends on film properties by which mean a barrier film on the interface of bare mild steel/solution or an unsolvable liquid membrane as hydrophibic effect.In present work the film-forming mechanism by in situ and chemistry-mechanics effect is also discussed.
文摘The use of Crocin, derived from the flowers of Crocus sativus, is investigated as corrosion inhibitor for the AA1050, AA5083, AA5754 and AA6082 aluminum alloys in chloride ions environment. Aluminum and aluminum alloys are subjected to corrosion in the aggressive environment of chlorides, so several green corrosion inhibitors, mostly of plant origin, with minimum impact on health and the environment have been examined. In this study, the inhibition efficiency of 1.25 mM Crocin in a 0.01 M NaCl corrosive solution was assessed via electrochemical corrosion techniques and gravimetric mass loss measurements of the aluminum alloys. The surface of the specimens was examined using Scanning Electron Microscopy, Energy Dispersive Spectroscopy, Stereomicroscopy and Glossiness measurements. Experimental results reveal the protective anticorrosive action of Crocin for all aluminum alloys in the sodium chloride medium.
文摘Inorganic scale deposits are a major water-related problem encountered in producing oil and gas wells. The harshness of scale deposits is dependent on the field operating conditions. Scale deposits can vary from mild scaling tendencies to extreme. In general, the scale deposit will cause a reduction in formation pores, declining productivity and eventually blockage of the wellbore and hence unexpected downtime if it is allowed to persevere. To overcome this, the productivity of an oil and gas well is ensured by handling scale deposits via removal or prevention methods. Scale prevention is the best and cost-e ective method for handling scale deposits that ensures production continuity. Inhibition through 'threshold' scale inhibitor treatment is the most common method that is proven to prevent or reduce likely deposits. This paper examines the art of synthetic scale inhibitors, in particular, threshold scale inhibitors in oil and gas production. It discusses the chemistry of those inhibitors, inhibition mechanisms, treatment methods and key properties for their applications. It also highlights the chemistry of the synthetic routes often used to produce them in the laboratory and/or industry. Finally, it highlights the environmental concerns for the applicability of threshold scale inhibitors.