The experimental results which were carried out by different researchers on corrosion of RCC beam were validated in ABAQUS. A finite element (FE) model similar to experimental condition was generated in ABAQUS. The mo...The experimental results which were carried out by different researchers on corrosion of RCC beam were validated in ABAQUS. A finite element (FE) model similar to experimental condition was generated in ABAQUS. The model with different percentages of corrosion and with varying load conditions was also generated. The deflections of RCC beam for different corrosion percentages and for varying load conditions were then validated. The model is then used to explore the effects of bar radial expansion, due to formation of corrosion products, on the cracking of cover concrete. The predictions are compared with tests results from reinforced concrete accelerated corrosion specimens. The aim of the analytical investigation was to reveal the mechanism for the development of concrete cracking due to corrosion of reinforcement. Further the finite element model will be used to explain qualitatively the experimentally determined relationship between amount of corrosion for concrete cracking and ratio of concrete cover to bar diameter, as well as that between reinforcement bond strength and amount of corrosion.展开更多
This paper sums up the determining analysis of the measuring location of Treflusing a thermocouple during the thermography tests.Laboratory temperature distribution testing methods,analysis of value and location of Tre...This paper sums up the determining analysis of the measuring location of Treflusing a thermocouple during the thermography tests.Laboratory temperature distribution testing methods,analysis of value and location of Treflmeasurement are explained in this paper.The heat source is two halogen lamps of 500 watts eachfitted at a distance of 30–50 cm.Noises appearing during testing of thermography are corrected with measured T_(refl) value.The results of thermogram correction of corroded concrete surfaces using T_(refl) values are displayed in this paper too.The concrete surface temperature results of quantitative image processing method are compared to the experimental test results.The results showed good accuracy,which was seen from most errors<3%and the maximum error is<5%.The end of paper,explained of application Treflvalue to the corroded reinforced concrete thermogram.展开更多
An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effec...An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effects of various factors on the anchorage reliability.These factors include both the length and width of cover cracking due to reinforcement corrosion,the cover thickness,the anchorage length,and the stirrup ratio.The results show that the effect of corrosion-induced crack length on the reliability index for anchorage,β0,is negligible when the crack on the concrete surface is just appearing,but with the crack widening,the β0 value is reduced significantly;the considerable changes in β0 result from a variation in cover depth and anchorage length;the effect of changes in the diameter or space of stirrups on the anchorage resistance is very limited,and the variation in β0 is also very low.展开更多
Electrochemical techniques of the corrosion measurements of reinforcing steeI in concrete have been evaluated. These techniques include half-cell potential measurements, impressed voltage method, impressed current met...Electrochemical techniques of the corrosion measurements of reinforcing steeI in concrete have been evaluated. These techniques include half-cell potential measurements, impressed voltage method, impressed current method and potentiostatic polarization technique. The results of corrosion behaviour of the steel in both 5%NaCl and 5%MgSO4 show that each electrochemical technique provides some information about the condition of the steel bar or the corrosivity of the environment being evaluated, yet none provides a complete data regarding the corrosion resistance of reinforcing steel in aggressive media展开更多
The corrosion of reinforcement in the concrete will cause the effective cross-sectional area of reinforcement to be weakened and the performance of reinforcement to change and lead to the degradation of the bond behav...The corrosion of reinforcement in the concrete will cause the effective cross-sectional area of reinforcement to be weakened and the performance of reinforcement to change and lead to the degradation of the bond behavior between reinforcement and concrete,which can seriously affect the mechanical properties of the structural elements.Therefore,it is of great practical significance to accurately simulate the corrosion morphology and the corrosion products of reinforcement.This paper improves the previous cellular automata models and establishes a new cellular automata model framework for simulating the random pitting corrosion process of reinforcement in concrete.This model defines the detailed local evolution laws of material transformation,penetration and diffusion processes during the corrosion.Meanwhile,based on the spatial inhomogeneity of corrosion,three parameters are introduced into the model:The dissolution probability parameter p,the local corrosion space parameterλand the local corrosion probability parameterε,which establishes a parameterized model of corrosion probability.The research results show that the common steel reinforcement corrosion morphology can be obtained by adjusting the parameters.The volume expansion rate of the corrosion products is about 2,which is consistent with the relevant experimental research results.The cellular automata model in this paper can simulate the common steel reinforcement corrosion morphology and corrosion products in engineering.展开更多
Corrosion and electrochemical behaviour of reinforcing steel embedded in cement pastes with and without concrete admixtures used in Egypt to modify concrete properties have been studied. The influence of the admixtur...Corrosion and electrochemical behaviour of reinforcing steel embedded in cement pastes with and without concrete admixtures used in Egypt to modify concrete properties have been studied. The influence of the admixtures on the corrosion resistance of the steel against chloride attack has been studied by using impressed current and impressed voltage techniques. The results indicate that the type and concentration of the used admixture have an important effect on the extent of chloride induced corrosion of the steel. The mechanism of corrosion of steel due to chloride attack was discussed. (Edited author abstract) 16 Refs.展开更多
The paper investigates the long-term seismic behaviour of an underground reinforced concrete(RC)metro tunnel in Santiago,Chile,considering the combined effects of chloride-induced corrosion and cumulative,low-amplitud...The paper investigates the long-term seismic behaviour of an underground reinforced concrete(RC)metro tunnel in Santiago,Chile,considering the combined effects of chloride-induced corrosion and cumulative,low-amplitude seismic shaking on the structure’s performance.The soil-tunnel response is evaluated with the aid of transient,nonlinear finite element analysis using a two-dimensional(2D)plane strain numerical model that adopts advanced nonlinear models for the simulation of soil and concrete plasticity and the dynamic stiffness behaviour.The effects of corrosion deterioration are demonstrated in terms of time-dependent loss of rebar area and cover concrete stiffness and strength.The study illustrates the influence of ageing and repeated seismic shaking on lining deformation,crack development,and the modal characteristics of the intact and degrading systems.The results indicate that multiple lowamplitude events drive the non-degrading RC tunnel beyond its elastic regime without significant structural response consequences.A noticeable impact of corrosion deterioration on the structure’s seismic performance is revealed,increasing with the number and intensity of earthquake events.Two different tunnel embedment depths are comparatively assessed.The analyses demonstrate larger coseismic section convergence in the case of the deeper tunnel,yet a less pronounced effect of ageing and successive seismic loading compared to the shallow section,which is evident in the RC lining cracks at the end of shaking.展开更多
According to the service environment of subway structure,experiment is carried out to simulate influence of different loading levels to reinforcement corrosion of R.C element affected by stray current and chlorine sal...According to the service environment of subway structure,experiment is carried out to simulate influence of different loading levels to reinforcement corrosion of R.C element affected by stray current and chlorine salt solution. The current density of the corrosion is measured with the linear polarization resistance method,together with the qualitative analysis and quantitative calculation. Experiment shows that rebar corrosion current density increase accordingly with the increase of loading level. The quantitative relations and the time of rust corrosion of reinforcement are obtained.展开更多
In addition to the normal service loadings,engineering structures may be subjected to occasional loadings such as earthquakes,which may cause severe destruction.When the steel rebar is corroded,the damage could be mor...In addition to the normal service loadings,engineering structures may be subjected to occasional loadings such as earthquakes,which may cause severe destruction.When the steel rebar is corroded,the damage could be more serious.To investigate the seismic performance of corroded RC columns,a three-dimensional mesoscale finite element model was established.In this approach,concrete was considered as a three-phase composite composed of aggregate,mortar matrix and interfacial transition zone(ITZ).The nonlinear spring were used to describe the bond slip between steel and concrete.The degradation of the material properties of the steel rebar and cover concrete as well as the bonding performance due to corrosion were taken into account.The rationality of the developed numerical analysis model was verified by the good agreement between the numerical results and the available experimental observation.On this basis,the effect of corrosion level,axial force ratio and shear-span ratio on the seismic performance of corroded RC columns,including lateral bearing capacity,ductility,and energy consumption,were explored and discussed.The simulation results indicate that the mesoscopic method can consider the heterogeneity of concrete,to more realistically and reasonably reflect the destruction process of structures.展开更多
The parameter of filling expanding ratio n, plasticity factor k1 and deformation parameter k2 is raised, and then the elasto-plasticity critical corrosive ratio model for RC structure corrosive expanding crack based o...The parameter of filling expanding ratio n, plasticity factor k1 and deformation parameter k2 is raised, and then the elasto-plasticity critical corrosive ratio model for RC structure corrosive expanding crack based on elasto-plasticity theory is constructed in this paper. The influences of parameters such as filling expansion ratio n, plasticity factor kl, deformation parameter k2, Poisson ratio of concrete v, diameter of reinforced bar d and protective layer thickness c on the critical corrosive ratio are researched by theory analysis and experiments. The experimental results validate the accuracy of the model. According to the experimental study, the least squares solution is calculated as n = 1.8 ,k1 =0.61 ,k2 =0.5.展开更多
The steel corrosion in concrete is widely reported over the last two to three decades. Much effort has been devoted to researching the causes and mechanisms of reinforcement corrosion and to the questions of durabilit...The steel corrosion in concrete is widely reported over the last two to three decades. Much effort has been devoted to researching the causes and mechanisms of reinforcement corrosion and to the questions of durability for concrete structures, but relatively little attention has been devoted to the problem of assessing the effect of bond loss due to corrosion on the structural behavior of corroded elements. From the test results on corroded specimens, the mechanism of degradation in bond behavior between corroded bars and concrete, and the effects of bond loss on structural performances are summarized. Results show that corrosion level, cover depth-W-bar diameter ratio, surface condition of re/nforcement, stirrups, etc. can influence the bond behavior of corroded bars. In addition, the deterioration in bond due to corrosion may induce reduction in bearing capacity, degradation of serviceability, and the loss in ductility for steel-corroded concrete members.展开更多
文摘The experimental results which were carried out by different researchers on corrosion of RCC beam were validated in ABAQUS. A finite element (FE) model similar to experimental condition was generated in ABAQUS. The model with different percentages of corrosion and with varying load conditions was also generated. The deflections of RCC beam for different corrosion percentages and for varying load conditions were then validated. The model is then used to explore the effects of bar radial expansion, due to formation of corrosion products, on the cracking of cover concrete. The predictions are compared with tests results from reinforced concrete accelerated corrosion specimens. The aim of the analytical investigation was to reveal the mechanism for the development of concrete cracking due to corrosion of reinforcement. Further the finite element model will be used to explain qualitatively the experimentally determined relationship between amount of corrosion for concrete cracking and ratio of concrete cover to bar diameter, as well as that between reinforcement bond strength and amount of corrosion.
基金This research was supported by the P3MI Research Grants.Thanks to Prof.Herlien D Setio as authors who received the grant.
文摘This paper sums up the determining analysis of the measuring location of Treflusing a thermocouple during the thermography tests.Laboratory temperature distribution testing methods,analysis of value and location of Treflmeasurement are explained in this paper.The heat source is two halogen lamps of 500 watts eachfitted at a distance of 30–50 cm.Noises appearing during testing of thermography are corrected with measured T_(refl) value.The results of thermogram correction of corroded concrete surfaces using T_(refl) values are displayed in this paper too.The concrete surface temperature results of quantitative image processing method are compared to the experimental test results.The results showed good accuracy,which was seen from most errors<3%and the maximum error is<5%.The end of paper,explained of application Treflvalue to the corroded reinforced concrete thermogram.
基金The Key Science Foundation of Liaoning ProvincialCommunications Department (No.0101).
文摘An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effects of various factors on the anchorage reliability.These factors include both the length and width of cover cracking due to reinforcement corrosion,the cover thickness,the anchorage length,and the stirrup ratio.The results show that the effect of corrosion-induced crack length on the reliability index for anchorage,β0,is negligible when the crack on the concrete surface is just appearing,but with the crack widening,the β0 value is reduced significantly;the considerable changes in β0 result from a variation in cover depth and anchorage length;the effect of changes in the diameter or space of stirrups on the anchorage resistance is very limited,and the variation in β0 is also very low.
文摘Electrochemical techniques of the corrosion measurements of reinforcing steeI in concrete have been evaluated. These techniques include half-cell potential measurements, impressed voltage method, impressed current method and potentiostatic polarization technique. The results of corrosion behaviour of the steel in both 5%NaCl and 5%MgSO4 show that each electrochemical technique provides some information about the condition of the steel bar or the corrosivity of the environment being evaluated, yet none provides a complete data regarding the corrosion resistance of reinforcing steel in aggressive media
基金The works described in this paper are substantially supported by the grant from National Natural Science Foundation of China(Grant No.51678135)Natural Science Foundation of Jiangsu Province(No.BK20171350)Six Talent Peak Projects in Jiangsu Province(JNHB-007),which are gratefully acknowledged.
文摘The corrosion of reinforcement in the concrete will cause the effective cross-sectional area of reinforcement to be weakened and the performance of reinforcement to change and lead to the degradation of the bond behavior between reinforcement and concrete,which can seriously affect the mechanical properties of the structural elements.Therefore,it is of great practical significance to accurately simulate the corrosion morphology and the corrosion products of reinforcement.This paper improves the previous cellular automata models and establishes a new cellular automata model framework for simulating the random pitting corrosion process of reinforcement in concrete.This model defines the detailed local evolution laws of material transformation,penetration and diffusion processes during the corrosion.Meanwhile,based on the spatial inhomogeneity of corrosion,three parameters are introduced into the model:The dissolution probability parameter p,the local corrosion space parameterλand the local corrosion probability parameterε,which establishes a parameterized model of corrosion probability.The research results show that the common steel reinforcement corrosion morphology can be obtained by adjusting the parameters.The volume expansion rate of the corrosion products is about 2,which is consistent with the relevant experimental research results.The cellular automata model in this paper can simulate the common steel reinforcement corrosion morphology and corrosion products in engineering.
文摘Corrosion and electrochemical behaviour of reinforcing steel embedded in cement pastes with and without concrete admixtures used in Egypt to modify concrete properties have been studied. The influence of the admixtures on the corrosion resistance of the steel against chloride attack has been studied by using impressed current and impressed voltage techniques. The results indicate that the type and concentration of the used admixture have an important effect on the extent of chloride induced corrosion of the steel. The mechanism of corrosion of steel due to chloride attack was discussed. (Edited author abstract) 16 Refs.
基金supported by the Newton Fund:EPSRC,UK&CONICYT,Chile(EPSRC Grant No.EP/N03435X/1)the Extending Shaking Tunnel Vision project funded jointly by the Global Challenge Research Fund(GCRF)and the Higher Education Funding Council for England(HEFCE)under account number 95541229,both led by the University of Leeds.
文摘The paper investigates the long-term seismic behaviour of an underground reinforced concrete(RC)metro tunnel in Santiago,Chile,considering the combined effects of chloride-induced corrosion and cumulative,low-amplitude seismic shaking on the structure’s performance.The soil-tunnel response is evaluated with the aid of transient,nonlinear finite element analysis using a two-dimensional(2D)plane strain numerical model that adopts advanced nonlinear models for the simulation of soil and concrete plasticity and the dynamic stiffness behaviour.The effects of corrosion deterioration are demonstrated in terms of time-dependent loss of rebar area and cover concrete stiffness and strength.The study illustrates the influence of ageing and repeated seismic shaking on lining deformation,crack development,and the modal characteristics of the intact and degrading systems.The results indicate that multiple lowamplitude events drive the non-degrading RC tunnel beyond its elastic regime without significant structural response consequences.A noticeable impact of corrosion deterioration on the structure’s seismic performance is revealed,increasing with the number and intensity of earthquake events.Two different tunnel embedment depths are comparatively assessed.The analyses demonstrate larger coseismic section convergence in the case of the deeper tunnel,yet a less pronounced effect of ageing and successive seismic loading compared to the shallow section,which is evident in the RC lining cracks at the end of shaking.
基金National Natural Science Foundation of China (Granted No.50808005)National"11-5"Science and Technology Supporting Program(Granted No.2006BAJ27B04)Major Program of Beijing Municipal Natural Science Foundation(Granted No.8100001)
文摘According to the service environment of subway structure,experiment is carried out to simulate influence of different loading levels to reinforcement corrosion of R.C element affected by stray current and chlorine salt solution. The current density of the corrosion is measured with the linear polarization resistance method,together with the qualitative analysis and quantitative calculation. Experiment shows that rebar corrosion current density increase accordingly with the increase of loading level. The quantitative relations and the time of rust corrosion of reinforcement are obtained.
基金National Natural Science Foundation of China under Grant Nos.51822801 and 51978022。
文摘In addition to the normal service loadings,engineering structures may be subjected to occasional loadings such as earthquakes,which may cause severe destruction.When the steel rebar is corroded,the damage could be more serious.To investigate the seismic performance of corroded RC columns,a three-dimensional mesoscale finite element model was established.In this approach,concrete was considered as a three-phase composite composed of aggregate,mortar matrix and interfacial transition zone(ITZ).The nonlinear spring were used to describe the bond slip between steel and concrete.The degradation of the material properties of the steel rebar and cover concrete as well as the bonding performance due to corrosion were taken into account.The rationality of the developed numerical analysis model was verified by the good agreement between the numerical results and the available experimental observation.On this basis,the effect of corrosion level,axial force ratio and shear-span ratio on the seismic performance of corroded RC columns,including lateral bearing capacity,ductility,and energy consumption,were explored and discussed.The simulation results indicate that the mesoscopic method can consider the heterogeneity of concrete,to more realistically and reasonably reflect the destruction process of structures.
基金Supported by the Foundation of Hubei Provincial Depart-ment of Education (Q200614002)Chenguang Program of Wuhan City (20055003059-29)
文摘The parameter of filling expanding ratio n, plasticity factor k1 and deformation parameter k2 is raised, and then the elasto-plasticity critical corrosive ratio model for RC structure corrosive expanding crack based on elasto-plasticity theory is constructed in this paper. The influences of parameters such as filling expansion ratio n, plasticity factor kl, deformation parameter k2, Poisson ratio of concrete v, diameter of reinforced bar d and protective layer thickness c on the critical corrosive ratio are researched by theory analysis and experiments. The experimental results validate the accuracy of the model. According to the experimental study, the least squares solution is calculated as n = 1.8 ,k1 =0.61 ,k2 =0.5.
基金The Liaoning Province CommunicationDepartment Key Science Foundation (No.0101)
文摘The steel corrosion in concrete is widely reported over the last two to three decades. Much effort has been devoted to researching the causes and mechanisms of reinforcement corrosion and to the questions of durability for concrete structures, but relatively little attention has been devoted to the problem of assessing the effect of bond loss due to corrosion on the structural behavior of corroded elements. From the test results on corroded specimens, the mechanism of degradation in bond behavior between corroded bars and concrete, and the effects of bond loss on structural performances are summarized. Results show that corrosion level, cover depth-W-bar diameter ratio, surface condition of re/nforcement, stirrups, etc. can influence the bond behavior of corroded bars. In addition, the deterioration in bond due to corrosion may induce reduction in bearing capacity, degradation of serviceability, and the loss in ductility for steel-corroded concrete members.