The purification efficiency in the treatment of the mine drainage generated by the mineral processing industry in Mengzi,Yunnan Project, China, was investigated, and the influences of the treated drainage on the miner...The purification efficiency in the treatment of the mine drainage generated by the mineral processing industry in Mengzi,Yunnan Project, China, was investigated, and the influences of the treated drainage on the mineral electrodes' electrochemical behaviors were tested. Experiments with different doses of polyacrylamide(PAM) and polymeric ferric sulfate(PFS) at different pH values were carried out, and the advanced purification by activated carbon(AC) was conducted. Compared with PFS, the better coagulant for removal efficiency is PAM, under the optimal conditions, the removals of Pb2+, Zn2+, Cu2+ and COD reduction from solution were 94.8%, 79.9%, 87.6% and 85%, respectively. In the advanced purification, the particle size of activated carbon and agitation time played important roles in the removal efficiency. Each pollute concentration could meet the emission standard of pollutants for lead and zinc industry(GB25466—2010). The wastewater without treatment affected galena and sphalerite electrochemical behaviors greatly, after treatment by the technology, the effects disappeared, which proved the reliability of the technology for wastewater treatment.展开更多
基金Project(2010CB630905)supported by the National Basic Research Program of China
文摘The purification efficiency in the treatment of the mine drainage generated by the mineral processing industry in Mengzi,Yunnan Project, China, was investigated, and the influences of the treated drainage on the mineral electrodes' electrochemical behaviors were tested. Experiments with different doses of polyacrylamide(PAM) and polymeric ferric sulfate(PFS) at different pH values were carried out, and the advanced purification by activated carbon(AC) was conducted. Compared with PFS, the better coagulant for removal efficiency is PAM, under the optimal conditions, the removals of Pb2+, Zn2+, Cu2+ and COD reduction from solution were 94.8%, 79.9%, 87.6% and 85%, respectively. In the advanced purification, the particle size of activated carbon and agitation time played important roles in the removal efficiency. Each pollute concentration could meet the emission standard of pollutants for lead and zinc industry(GB25466—2010). The wastewater without treatment affected galena and sphalerite electrochemical behaviors greatly, after treatment by the technology, the effects disappeared, which proved the reliability of the technology for wastewater treatment.