The corrosion resistance and evolution of corrosion products in medium-carbon high-strength spring steels were investigated in a neutral salt spray(5 wt% Na Cl solution). A formation model of γ-Fe OOH and a transform...The corrosion resistance and evolution of corrosion products in medium-carbon high-strength spring steels were investigated in a neutral salt spray(5 wt% Na Cl solution). A formation model of γ-Fe OOH and a transformation model describing the conversion of γ-Fe OOH to α-Fe OOH were constructed. The results indicated that, at the initial corrosion stage, the corrosion resistance was gradually improved with the addition of Cr; however, with the addition of alloying element V, the corrosion resistance decreased. These results were attributed mainly to the initial corrosion stage being closely related to the matrix microstructure parameters such as grain-boundary character and dislocation density. After the rust layer was formed at a later corrosion stage, the corrosion resistance was reinforced with the addition of Cr and V because Cr strongly influenced the composition, structure, and morphology of the corrosion products. The results presented herein show that Cr was conducive to the transformation of γ-Fe OOH into α-Fe OOH. Moreover, V and Cr exhibited obvious synergy and were enriched in the inner layer of the corrosion products.展开更多
The influence mechanism of trace boron on the corrosion resistance of high-strength low-alloy(HSLA)steel in a simulated marine environment was studied by combining first-principles calculation with experiment.The effe...The influence mechanism of trace boron on the corrosion resistance of high-strength low-alloy(HSLA)steel in a simulated marine environment was studied by combining first-principles calculation with experiment.The effect of boron on the corrosion properties and corrosion morphology of the rust layer formed on the surface of HSLA steel was studied by means of corrosion weightlessness method,polarization curve,scanning electron microscopy(SEM)and X-ray diffraction(XRD)technique.The mass loss measurements and polarization curves revealed that the corrosion resistance of HSLA steel is improved by adding trace boron.XRD and SEM results show that the rust layer is produced byα-FeOOH(the main protective phase),Fe_(3)O_(4) andγ-FeOOH,and boron contributes to stability ofα-FeOOH.Based on the first-principles calculation,the solid solution of B atom in the corrosion product is beneficial to the fixation of Cl atom and to the reduction of the corrosion of Cl atom to the steel matrix.展开更多
The accelerated wet-dry cyclic corrosion tests have been carried out of a high strength bainitic steel and 09CuPCrNi. The results indicated that the corrosion resistance of 09CuPCrNi was better than that of the bainit...The accelerated wet-dry cyclic corrosion tests have been carried out of a high strength bainitic steel and 09CuPCrNi. The results indicated that the corrosion resistance of 09CuPCrNi was better than that of the bainitic steel based on the mass loss measurements. The morphology and composition of the rusting products have been investigated in order to realize the mechanism of rust formation on the two steels. The rust scale on both steels was composed of a dense inner layer and a loose outer layer. The inner layer grew thicker and denser as the test proceeding. Both of inner and outer layers were mainly composed of magnetite (Fe3O4) and maghemite (γ-Fe2O3) with a small amount of lepidocrocite (γ-FeOOH) and akaganeite (β-FeOOH). The rust phase of γ-Fe2O3 was detected in a higher amount of the inner layer, resulting in a much denser inner layer. The inner rust layer of 09CuPCrNi being denser and thicker than that of the high strength bainitic steel was attributed to the alloying elements such as copper, chromium and phosphorus enriched in it. The protective inner rust layer plays an important role in the corrosion resistance of the steel.展开更多
The corrosion behavior and mechanism of 3Ni weathering steel in a simulated oceanic atmospheric environment are investigated in order to comprehend the impacts of La,as determined through electrochemical analysis and ...The corrosion behavior and mechanism of 3Ni weathering steel in a simulated oceanic atmospheric environment are investigated in order to comprehend the impacts of La,as determined through electrochemical analysis and rust layer characterization.The results of this study demonstrate that the addition of La enhances the corrosion resistance of 3Ni weathering steel in the marine atmospheric environment,thereby reducing the corrosion rate and improving the protection of the rust layer.The influence of La on corrosion resistance can be attributed to two primary factors.Firstly,La functions as a grain refiner,minimizing the potential difference of the micro-regions on the substrate surface,thereby significantly reducing the corrosion of bare steel in the marine environment.Secondly,La inhibits the process of Fe_(3)O_(4) oxidation back toγ-FeOOH during corrosion at the local site,thus decreasing the formation ofγ-FeOOH and enhancing the charge transfer resistance.This research work may serve as a reference for expanding the application of rare earth elements in the field of weathering steel.展开更多
基金financially supported by the National Natural Science Foundation of China (No.51474031)
文摘The corrosion resistance and evolution of corrosion products in medium-carbon high-strength spring steels were investigated in a neutral salt spray(5 wt% Na Cl solution). A formation model of γ-Fe OOH and a transformation model describing the conversion of γ-Fe OOH to α-Fe OOH were constructed. The results indicated that, at the initial corrosion stage, the corrosion resistance was gradually improved with the addition of Cr; however, with the addition of alloying element V, the corrosion resistance decreased. These results were attributed mainly to the initial corrosion stage being closely related to the matrix microstructure parameters such as grain-boundary character and dislocation density. After the rust layer was formed at a later corrosion stage, the corrosion resistance was reinforced with the addition of Cr and V because Cr strongly influenced the composition, structure, and morphology of the corrosion products. The results presented herein show that Cr was conducive to the transformation of γ-Fe OOH into α-Fe OOH. Moreover, V and Cr exhibited obvious synergy and were enriched in the inner layer of the corrosion products.
基金This work is supported by National Natural Science Foundation of China(52004190).
文摘The influence mechanism of trace boron on the corrosion resistance of high-strength low-alloy(HSLA)steel in a simulated marine environment was studied by combining first-principles calculation with experiment.The effect of boron on the corrosion properties and corrosion morphology of the rust layer formed on the surface of HSLA steel was studied by means of corrosion weightlessness method,polarization curve,scanning electron microscopy(SEM)and X-ray diffraction(XRD)technique.The mass loss measurements and polarization curves revealed that the corrosion resistance of HSLA steel is improved by adding trace boron.XRD and SEM results show that the rust layer is produced byα-FeOOH(the main protective phase),Fe_(3)O_(4) andγ-FeOOH,and boron contributes to stability ofα-FeOOH.Based on the first-principles calculation,the solid solution of B atom in the corrosion product is beneficial to the fixation of Cl atom and to the reduction of the corrosion of Cl atom to the steel matrix.
文摘The accelerated wet-dry cyclic corrosion tests have been carried out of a high strength bainitic steel and 09CuPCrNi. The results indicated that the corrosion resistance of 09CuPCrNi was better than that of the bainitic steel based on the mass loss measurements. The morphology and composition of the rusting products have been investigated in order to realize the mechanism of rust formation on the two steels. The rust scale on both steels was composed of a dense inner layer and a loose outer layer. The inner layer grew thicker and denser as the test proceeding. Both of inner and outer layers were mainly composed of magnetite (Fe3O4) and maghemite (γ-Fe2O3) with a small amount of lepidocrocite (γ-FeOOH) and akaganeite (β-FeOOH). The rust phase of γ-Fe2O3 was detected in a higher amount of the inner layer, resulting in a much denser inner layer. The inner rust layer of 09CuPCrNi being denser and thicker than that of the high strength bainitic steel was attributed to the alloying elements such as copper, chromium and phosphorus enriched in it. The protective inner rust layer plays an important role in the corrosion resistance of the steel.
基金G.Niu,R.Yuan,H.B.Wu,C.J.Shang,and X.P.Mao appreciate the support from the National Key R&D Program of China(No.2021YFB3701700)G.Niu appreciates the support from the National Natural Science Foundation of China(No.52304389)the China Postdoctoral Science Foundation(No.2022M720402).
文摘The corrosion behavior and mechanism of 3Ni weathering steel in a simulated oceanic atmospheric environment are investigated in order to comprehend the impacts of La,as determined through electrochemical analysis and rust layer characterization.The results of this study demonstrate that the addition of La enhances the corrosion resistance of 3Ni weathering steel in the marine atmospheric environment,thereby reducing the corrosion rate and improving the protection of the rust layer.The influence of La on corrosion resistance can be attributed to two primary factors.Firstly,La functions as a grain refiner,minimizing the potential difference of the micro-regions on the substrate surface,thereby significantly reducing the corrosion of bare steel in the marine environment.Secondly,La inhibits the process of Fe_(3)O_(4) oxidation back toγ-FeOOH during corrosion at the local site,thus decreasing the formation ofγ-FeOOH and enhancing the charge transfer resistance.This research work may serve as a reference for expanding the application of rare earth elements in the field of weathering steel.