The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investiga...The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure,magnetic properties and corrosion resistance of NdFeB magnets.Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary.While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains,its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets.Besides,during corrosion,an In-rich precipitate phase formed,hindering the ingress of the corrosive medium into the magnet.Consequently,this significantly bolstered the corrosion resistance of the sintered NdFeB magnets.The phase formation,magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work,which provides new prospects for the preparation of high-performance sintered NdFeB magnets.展开更多
The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,inte...The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.展开更多
This comprehensive review examines the structural,mechanical,electronic,and thermodynamic properties of Mg-Li-Al alloys,focusing on their corrosion resistance and mechanical performance enhancement.Utilizing first-pri...This comprehensive review examines the structural,mechanical,electronic,and thermodynamic properties of Mg-Li-Al alloys,focusing on their corrosion resistance and mechanical performance enhancement.Utilizing first-principles calculations based on Density Functional Theory(DFT)and the quasi-harmonic approximation(QHA),the combined properties of the Mg-Li-Al phase are explored,revealing superior incompressibility,shear resistance,and stiffness compared to individual elements.The review highlights the brittleness of the alloy,supported by B/G ratios,Cauchy pressures,and Poisson’s ratios.Electronic structure analysis shows metallic behavior with varied covalent bonding characteristics,while Mulliken population analysis emphasizes significant electron transfer within the alloy.This paper also studied thermodynamic properties,including Debye temperature,heat capacity,enthalpy,free energy,and entropy,which are precisely examined,highlighting the Mg-Li-Al phase sensitive to thermal conductivity and thermal performance potential.Phonon density of states(PHDOS)confirms dynamic stability,while anisotropic sound velocities reveal elastic anisotropies.This comprehensive review not only consolidates the current understanding of the Mg-Li-Al alloy’s properties but also proposes innovative strategies for enhancing corrosion resistance.Among these strategies is the introduction of a corrosion barrier akin to the Mg-Li-Al network,which holds promise for advancing both the applications and performance of these alloys.This review serves as a crucial foundation for future research aimed at optimizing alloy design and processing methods.展开更多
The in-situ growing approach was utilized in this article to construct the magnesium–aluminum layered double hydroxide(MgAl-LDH)film on the surface of a 1060 aluminum anodized film.To improve the corrosion resistance...The in-situ growing approach was utilized in this article to construct the magnesium–aluminum layered double hydroxide(MgAl-LDH)film on the surface of a 1060 aluminum anodized film.To improve the corrosion resistance and friction qualities of aluminum alloy,the MgAl-LDH coating was treated using stearic acid(SA)and thiourea(TU).The aluminum substrate and anodized aluminum film layer corroded to varying degrees after 24 h of immersion in 3.5%(mass)NaCl solution,while the modified hydrotalcite film layer continued to exhibit the same microscopic morphology even after being immersed for 7 d.The results show that the synergistic action of thiourea and stearic acid can effectively improve the corrosion resistance of the MgAl-LDH substrate.The tribological testing reveals that the hydrotalcite film layer and the modified film layer lowered the friction coefficient of the anodized aluminum surface substantially.The results of the simulations and experiments demonstrate that SA forms the dense LDH-TU interlayer film layer by exchanging NO_(3)^(-)ions between TU layers on the one hand and the LDH-SA film layer by adsorption on the surface of LDH on the other.Together,these two processes create LDH-TUSA,which can significantly increase the substrate’s corrosion resistance.This synergistically modified superhydrophobic and retardant hydrotalcite film layer offers a novel approach to the investigation of wear reduction and corrosion protection on the surface of aluminum and its alloys.展开更多
Silver or copper ions are often chosen as antibacterial agents. But a few reports are concerned with these two antibacterial agents for preparation of antibacterial stainless steel (SS). The antibacterial properties...Silver or copper ions are often chosen as antibacterial agents. But a few reports are concerned with these two antibacterial agents for preparation of antibacterial stainless steel (SS). The antibacterial properties and corrosion resistance of AISI 420 stainless steel implanted by silver and copper ions were investigated. Due to the cooperative antibacterial effect of silver and copper ions, the Ag/Cu implanted SS showed excellent antibacterial activities against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) at a total implantation dose of 2~ 1017 ions/cm2. Electrochemical polarization curves revealed that the corrosion resistance of Ag/Cu implanted SS was slightly enhanced as compared with that of un-implanted SS, The implanted layer was characterized by X-ray photoelec- tron spectroscopy (XPS). Core level XPS spectra indicate that the implanted silver and copper ions exist in metallic state in the implanted layer.展开更多
Mg?1Zn?0.5Ca alloys were prepared by traditional steel mould casting and water-cooled copper mould injection casting at higher cooling rate. Microstructure, mechanical properties and bio-corrosion resistance of two al...Mg?1Zn?0.5Ca alloys were prepared by traditional steel mould casting and water-cooled copper mould injection casting at higher cooling rate. Microstructure, mechanical properties and bio-corrosion resistance of two alloys were contrastively investigated. Grain size reduces remarkably and microstructure becomes homogenous when raising cooling rate. The bio-corrosion behaviour in 3.5% sodium chloride solution (3.5% NaCl) and Hank’s solution at 37°C was investigated using electrochemical polarization measurement and the results indicate that the alloy prepared at higher cooling rates has better corrosion resistance in both types of solution. Further mass loss immersion test in Hank’s solution reveals the same result. The reason of corrosion resistance improvement is that raising cooling rate brings about homogeneous microstructure, which leads to micro-galvanic corrosion alleviation. The tensile test results show that yield strength, ultimate tensile strength and elongation are improved by raising cooling rate and the improvement is mainly due to grain refinement.展开更多
During the recent years,some Mg based alloys have extensively been considered as a new generation of degradable and absorbable bio-medical materials.In this work,the Mg-2Zn-1Gd-1Ca(wt%)alloy as a new metallic bio-mate...During the recent years,some Mg based alloys have extensively been considered as a new generation of degradable and absorbable bio-medical materials.In this work,the Mg-2Zn-1Gd-1Ca(wt%)alloy as a new metallic bio-material was produced by the casting process followed by the heat treatment.The samples of the alloy were solution treated at temperatures of 500,550,and 600°C and then quench aged at temperatures of 125,150,and 175°C.The results of SEM-EDS examinations indicated that the alloy microstructure consists ofα-Mg matrix and the Ca_(2)Mg_(6)Zn_(3)and Mg_(3)Gd_(2)Zn_(3)secondary phases.With regard to the results of Vickers hardness test,the temperatures of 500°C and 150°C were selected as the optimum solutionizing and aging temperatures,respectively.Moreover,the dissolution of casting precipitates and production of lattice distortion occurring after the solution treatment led to the reduction in ultimate shear strength up to 21%.But,the precipitation hardening and morphological changes taking place during the aging treatment improved the ultimate shear strength up to 32%.Furthermore,the results of electro-chemical and weight-loss measurements in a simulated body fluid indicated that the heat-treated alloy is a promising candidate for the Mg based alloys recently considered for the bio-medical applications.展开更多
In this study, Ce was introduced into the AZ80 alloy and the effects of Ce addition on the microstructure, mechanical properties and corrosion resistance of the as-cast AZ80 magnesium alloy were investigated. The resu...In this study, Ce was introduced into the AZ80 alloy and the effects of Ce addition on the microstructure, mechanical properties and corrosion resistance of the as-cast AZ80 magnesium alloy were investigated. The results show that the addition of Ce into the AZ80 alloy can not only refine the microstructure, but also result in the formation of the needle-like Al4Ce phase. These tiny Al4Ce phases are homogeneously distributed at grain boundaries and within grains. An appropriate Ce addition can also change the β-Mg17Al12 phase at the grain boundaries from continuous network to small island-like. At the same time, with the increase of Ce content from 0 to 2.0wt.%, the macro-hardness of the as-cast alloy is enhanced linearly, while impact toughness, tensile strength and elongation all firstly increase and then decrease. The AZ80 alloy containing 1.0wt.% Ce exhibits the optimal properties. Its macro-hardness, impact toughness, tensile strength and elongation are 61.90 HB, 15.50 J·cm-2, 171.80 MPa and 3.35%, increase by 9.95%, 63%, 13.3% and 36.7%, respectively compared with the base alloy. In addition, Ce can enhance the corrosion resistance of the AZ80 magnesium alloy.展开更多
Laser cladding is a new surface repair method that can improve the wear and corrosion resistance of substrate surfaces.However,the cladding layer typically exhibits a rough surface,high hardness and large residual ten...Laser cladding is a new surface repair method that can improve the wear and corrosion resistance of substrate surfaces.However,the cladding layer typically exhibits a rough surface,high hardness and large residual tensile stress,and thus requires further machining and finishing.Ultrasonic rolling(U-rolling)is a highly efficient finishing and strengthening process that combines ultrasonic technology with traditional rolling(T-rolling).In this study,an ironbased alloy was coated onto the surface of H13 die steel using laser cladding,and the surface of the cladding layer was polished using U-rolling.The effects of U-rolling on the surface quality,corrosion resistance and friction and wear properties of the laser-cladding layer were investigated and compared with those obtained by T-rolling.The surface roughness of the U-rolled sample was only 1/4 that of the T-rolled sample.The hardness and residual compressive stress of the laser cladding layer after U-rolling were higher than those after T-rolling.Similarly,the surface corrosion resistance of the laser cladding layer after U-rolling was higher than that after T-rolling.U-rolling changed the surface roughness,grain size,and residual stress of the material and thus affected the corrosion resistance of the laser cladding layer.The friction coefficient and wear rate of the U-rolled surface of the cladding layer were lower than those of the T-rolled surface.In addition,the tribological properties of the cladding layer were found to be related to the rolling direction.When the friction direction of the sample was the same as the rolling direction,its friction and wear performance were higher than those when the two directions were perpendicular.展开更多
The microstructure,mechanical properties and corrosion resistance of Zr-30%Ta and Zr-25%Ta-5%Ti alloy prepared by spark plasma sintering(SPS)technology were investigated.The experimental results showed that the Zr-Ta-...The microstructure,mechanical properties and corrosion resistance of Zr-30%Ta and Zr-25%Ta-5%Ti alloy prepared by spark plasma sintering(SPS)technology were investigated.The experimental results showed that the Zr-Ta-Ti alloys made by the SPS processing have a low level of porosity with the relative density of 96%−98%.The analyses of XRD and TEM revealed that the Zr-30Ta alloy consists ofα+βphase,and the Zr-25Ta-5Ti alloy belongs to the nearβtype alloy containing a small amount ofαandωphases.With the addition of Ti,the elastic modulus of the alloys was decreased from(99.5±7.2)GPa for Zr-30Ta alloy to(73.6±6.3)GPa for Zr-25Ta-5Ti alloy.Furthermore,it is shown that,in comparison to CP-Ti and Ti-6Al-4V alloy,the Zr-Ta-Ti alloy produced in this work offers an improved corrosion resistance due to the more stable ZrO2 and Ta2O5 generated in the passivation film on the surface of the alloys.This study demonstrates that Zr-Ta-Ti alloys are a promising candidate of novel metallic biomaterials.展开更多
The WE43 magnesium alloy was prepared by squeeze casting,and the influence of squeeze casting parameters on mechanical properties and corrosion resistance was studied and compared with gravity casting.The gravity cast...The WE43 magnesium alloy was prepared by squeeze casting,and the influence of squeeze casting parameters on mechanical properties and corrosion resistance was studied and compared with gravity casting.The gravity cast WE43 alloy shows uneven grain size distribution,and some grains even greater than 90μm.While,the grain size of the squeeze cast WE43 alloy is mainly distributed in 20-50μm.The Mg12Nd2Y phase morphology changes from large lamellar to strips after squeeze casting,whereas Mg_(24)Y_(5) phase exhibits no obvious change.The yield strength,tensile strength,and elongation of the gravity cast WE43 alloy are 127 MPa,157 MPa,and 6%,respectively,and 145 MPa,193 MPa,and 9.1%for squeeze cast alloy.For the squeeze cast WE43 alloy,the average corrosion rate is 0.6056 mm·year^(-1) according to immersion test results,and according to electrochemical measurements,the corrosion current density is 78.13μA·cm^(-2),which is better than that of the gravity cast WE43 alloy.Compared with gravity casting,the grains and second phase of the WE43 alloy by squeeze casting are refined,and the mechanical properties and corrosion resistance are improved.This may expand the applications of the WE43 alloy.展开更多
This paper summarizes the corrosion behavior of Inconel 718 alloy, which is used in the oil and gas fields, including its uniform corrosion, pitting, intergranular corrosion, galvanic corrosion, stress corrosion, and ...This paper summarizes the corrosion behavior of Inconel 718 alloy, which is used in the oil and gas fields, including its uniform corrosion, pitting, intergranular corrosion, galvanic corrosion, stress corrosion, and hydrogen embrittlement. It also analyzes the main reasons for the good corrosion resistance of Inconel 718 alloy. This paper focuses on the effects of the heat-treatment process on corrosive behavior and provides guidelines for reasonable heat treatments in security service environments. Finally, this paper recommends further studies and applications of Inconel 718 in corrosion environments with high-temperature,high-pressure, and wet H2 S.展开更多
In order to improve the mechanical property and Cl- + S2- corrosion resistance of B15 copper.nickel alloy, Cu.15Ni-xRE (x: 0-0.1% by weight) alloy was prepared by adding rare earth (RE) in melted Cu-15Ni alloy u...In order to improve the mechanical property and Cl- + S2- corrosion resistance of B15 copper.nickel alloy, Cu.15Ni-xRE (x: 0-0.1% by weight) alloy was prepared by adding rare earth (RE) in melted Cu-15Ni alloy using metal mould casting method. Optical microscopy( OM), electronic tensile testing machine, X-ray diffraction ( XRD ), scanning electron microscope ( SEM ), and electrochemical testing system were used to analyze mechanical property, corrosion resistance property, and surface microstructure of different treatment samples. The results of OM and tensile testing show that the RE addition can effectively deoxidize the alloy melt and the microstructura of the alloy changes from coarse dendrite to small equlaxed grain. By addition of 0.05 % RE, the tensile strength and elongation of Cu-15Ni alloys are improved from 294 MPa to 340 MPa, and 8 % to 33.5 % respectively. The results of electrochemical testing show that the corrosion resistance of Cu-15Ni alloy is greatly improved by adding proper amount of RE, whereas excess addition of RE worsens the corrosion resistance. The optimum RE content was about 0.05 % by weight. In comparison with the alloy without RE, the corrosion potential and corrosion current density of Cu-15Ni alloy containing proper RE decreased by about - 0. 28 V and 70 A/cm2, respectively.展开更多
The microstructure and phase evolution of Mg-10.16Li-8.14Al-1.46Er alloy of as-cast,250℃+12 h,300℃+12 h,and 400℃+12 h were studied by optical microscopy,scanning electron microscope,and X-ray diffraction.The mechan...The microstructure and phase evolution of Mg-10.16Li-8.14Al-1.46Er alloy of as-cast,250℃+12 h,300℃+12 h,and 400℃+12 h were studied by optical microscopy,scanning electron microscope,and X-ray diffraction.The mechanical properties of Mg-10.16Li-8.14Al-1.46Er alloy in different states were tested by microhardness tester and tension tester.The corrosion resistance of Mg-10.16Li-8.14Al-1.46Er alloy in different states was measured by electrochemical workstation combined with hydrogen evolution and mass loss tests.The results show that the microstructure of as-cast Mg-10.16Li-8.14Al-1.46Er alloy consists ofα,β,AlLi,Al3Er and MgAlLi_(2)phases.Changes of microstructure are morphology and quantity ofαphase,and second phases of MgAlLi_(2)and AlLi by heat treatments at different temperatures.The best comprehensive tensile properties of Mg-10.16Li-8.14Al-1.46Er at 400℃are attributed to theαphase structure,solution strengthening and second phase strengthening.After heat treatments at different temperatures,the corrosion resistance of Mg-10.16Li-8.14Al-1.46Er was improved compared with as-cast samples.The Mg-10.16Li-8.14Al-1.46Er alloy has the best corrosion resistance at 250℃due to the best homogenization at this temperature.展开更多
The present work investigates the effect of Ni on the microstructure,mechanical properties,and corrosion resistance of CoCrFeNi_(x)Al_(0.15)Ti_(0.1)high-entropy alloys.It was found that the appropriate addition of Ni ...The present work investigates the effect of Ni on the microstructure,mechanical properties,and corrosion resistance of CoCrFeNi_(x)Al_(0.15)Ti_(0.1)high-entropy alloys.It was found that the appropriate addition of Ni element in the alloy is beneficial to reduce the average grain size of the alloy.The yield strength and tensile strength of the alloy underfine-grain strengthening have also been increased,whilethe ductility of the system in this study has not been significantly affected.In terms of corrosion resistance,CoCrFeNi_(x)Al_(0.15)Ti_(0.1)high-entropy alloys form a dense passive film at open circuit potential,possessing good corrosion resistance.However,with the excessive addition of Ni content in the alloy,the pitting corrosion resistance of the alloy in the environment of chloride ions will decrease due to the relative decrease of the relative content of Cr element.This work also canprovide guidancesfor the design and development of new precipitation-strengthened CoCrFeNi-based high-entropy alloys with excellent comprehensive properties.展开更多
Zn is a commonly used alloying element for Mg alloys owing to its beneficial effects on mechanical properties. To improve the mechanical and corrosion properties of WE43B Mg alloys, the effects of 0–0.7wt% Zn additio...Zn is a commonly used alloying element for Mg alloys owing to its beneficial effects on mechanical properties. To improve the mechanical and corrosion properties of WE43B Mg alloys, the effects of 0–0.7wt% Zn addition on the microstructure and properties of sample alloys were investigated. Addition of Zn to as-cast WE43B alloy promoted the formation of the Mg12Nd phase;by contrast, after T6 heat treatment, the phase composition of WE43B alloys with and without Zn addition remained mostly the same. A long-period stacking ordered phase was predicted by CALPHAD calculation, but this phase was not observed in either the as-cast or heat-treated Zn-containing WE43B alloys. The optimum temperature and duration of T6 heat treatment were obtained using CALPHAD calculations and hardness measurements. Addition of Zn resulted in a slight reduction in the average grain size of the as-cast and T6 heat-treated WE43B alloys and endowed them with increased corrosion resistance with little effect on their mechanical properties.展开更多
The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile exper...The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile experiments. The microstructural anisotropy of SLMed 316 L SS was also investigated by electron back-scattered diffraction and transmission electron microscopy. The grain sizes of the SLMed 316 L SS in the XOZ plane were smaller than those of the SLMed 316 L SS in the XOY plane, and a greater number of low-angle boundaries were present in the XOY plane, resulting in lower elongation for the XOY plane than for the XOZ plane. The SLMed 316 L was expected to exhibit higher strength but lower ductility than the wrought 316 L, which was attributed to the high density of dislocations. The pitting potentials of the SLMed 316 L samples were universally higher than those of the wrought sample in chloride solutions because of the annihilation of MnS or(Ca,Al)-oxides during the rapid solidification. However, the molten pool boundaries preferentially dissolved in aggressive solutions and the damage of the SLMed 316 L in FeCl3 solution was more serious after long-term service, indicating poor durability.展开更多
In this present work, Pb was applied in the Mg97Zn1Y2 alloy to improve its microstructure and properties, using conventional casting methods. The microstructure and properties of the Mg97 Zn1 Y2 alloy and Mg97Zn1Y2-x ...In this present work, Pb was applied in the Mg97Zn1Y2 alloy to improve its microstructure and properties, using conventional casting methods. The microstructure and properties of the Mg97 Zn1 Y2 alloy and Mg97Zn1Y2-x Pb(x=0.6 wt.%, 1.2 wt.% and 1.8 wt.%) alloys were observed by optical microscopy, scanning electron microscopy method and analyzed by X-ray diffraction, hardness and strength measurement and electrochemical testing. After adding Pb to the Mg97Zn1Y2 alloy, a new particle phase Mg_2 Pb was identified along the grain boundaries, and dendrites were refined. In addtion, the hardness of Mg97Zn1Y2-xPb(x=0.6 wt.%, 1.2 wt.% and 1.8 wt.%) alloys was higher than that of the Mg97 Zn1Y2 alloy; with the increase of Pb content, the hardness of the alloy increased first and then decreased, followed by a final slight increase, and reached a maximum of 89.1 HV when the Pb content was 0.6 wt.%. The strength of the alloy increased first and then decreased as the Pb content increased. Moreover, adding a small amount of Pb to the alloy can effectively inhibit corrosion, and Mg97Zn1Y2-0.6 wt.%Pb exhibits the best corrosion resistance ability.展开更多
New energy vehicles and offshore wind power industries have a high demand for sintered Nd-Fe-B magnets with high intrinsic coercivity and high corrosion resistance.In this study,the magnetic properties,anticorrosion p...New energy vehicles and offshore wind power industries have a high demand for sintered Nd-Fe-B magnets with high intrinsic coercivity and high corrosion resistance.In this study,the magnetic properties,anticorrosion properties,and micro structure of Nd-Fe-B sintered magnets with the intergranular addition of low-melting-point eutectic Tb_(68)Ni_(32) alloy powders were investigated.The aim is to determine if the addition of Tb_(68)Ni_(32) can improve these properties.A low melting-point eutectic alloy Tb_(68)Ni_(32) powders was prepared as a grain boundary additive and blended with the master alloy powders prior to sintering.The coercivity of the resultant magnets gradually increases from 1468 to 2151 kA/m by adding increasing amounts of Tb_(68)Ni_(32).At the same time,the remanence first increases and then slightly decreases.After studying the microstructure and elemental composition of the Tb_(68)Ni_(32) added magnets,it is found that the significant increase in coercivity and the negligible reduction in remanence is due to densificatio n,improved grain orientation,a unifo rm and continuous boundary phase distribution,as well as the generation of a(Nd,Pr,Tb)_(2) Fe_(14)B "core-shell" structure surrounding the main-phase grain.Moreover,the corrosion resistance of the magnet is greatly improved owing to the enhancement of electrochemical stability,as well as the optimization of the distribution and morphology of the intergranular phase.展开更多
Aluminum films with thickness of 8.78-20.82μm were deposited on the AZ31B magnesium alloys by DC magnetron sputtering.The influences of aluminum film on the micro-mechanical properties and corrosion behavior of the m...Aluminum films with thickness of 8.78-20.82μm were deposited on the AZ31B magnesium alloys by DC magnetron sputtering.The influences of aluminum film on the micro-mechanical properties and corrosion behavior of the magnesium alloys were investigated.The morphology of aluminum film was examined by scanning electron microscopy and the microstructure of aluminum film was analyzed by X-ray diffiactometry.Nanoindentation and nanoscratch tests were conducted to investigate their micromechanical properties.Moreover,potentiodynamical polarization test performed in 3.5%NaCl solution was carried out to study their anticorrosion performances.The results show that the surface hardness of AZ31B magnesium alloy with aluminum film is 1.38-2.01 GPa,higher than that of the magnesium alloy substrate.The critical load of Al film/AZ31B substrate is in the range of 0.68-2.77 N. The corrosion current density of AZ31B with aluminum film is 2-3 orders of magnitude less than that of bare AZ31B.And the corrosion potential with aluminum film positively shifts.Thus aluminum film can increase the corrosion resistance of Mg alloys obviously.展开更多
基金funded by Ningbo Key R&D Plan and“Unveiling and Leading”(Grant No.2023Z093)Ningbo Science and Technology Innovation 2025 Major Special Project(Grant No.2022Z106)Hezhou City Central Leading Local Science and Technology Development Special Fund Project(Grant No.HK ZY2022002).
文摘The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure,magnetic properties and corrosion resistance of NdFeB magnets.Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary.While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains,its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets.Besides,during corrosion,an In-rich precipitate phase formed,hindering the ingress of the corrosive medium into the magnet.Consequently,this significantly bolstered the corrosion resistance of the sintered NdFeB magnets.The phase formation,magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work,which provides new prospects for the preparation of high-performance sintered NdFeB magnets.
基金Project(202302AB080024)supported by the Department of Science and Technology of Yunnan Province,China。
文摘The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.
文摘This comprehensive review examines the structural,mechanical,electronic,and thermodynamic properties of Mg-Li-Al alloys,focusing on their corrosion resistance and mechanical performance enhancement.Utilizing first-principles calculations based on Density Functional Theory(DFT)and the quasi-harmonic approximation(QHA),the combined properties of the Mg-Li-Al phase are explored,revealing superior incompressibility,shear resistance,and stiffness compared to individual elements.The review highlights the brittleness of the alloy,supported by B/G ratios,Cauchy pressures,and Poisson’s ratios.Electronic structure analysis shows metallic behavior with varied covalent bonding characteristics,while Mulliken population analysis emphasizes significant electron transfer within the alloy.This paper also studied thermodynamic properties,including Debye temperature,heat capacity,enthalpy,free energy,and entropy,which are precisely examined,highlighting the Mg-Li-Al phase sensitive to thermal conductivity and thermal performance potential.Phonon density of states(PHDOS)confirms dynamic stability,while anisotropic sound velocities reveal elastic anisotropies.This comprehensive review not only consolidates the current understanding of the Mg-Li-Al alloy’s properties but also proposes innovative strategies for enhancing corrosion resistance.Among these strategies is the introduction of a corrosion barrier akin to the Mg-Li-Al network,which holds promise for advancing both the applications and performance of these alloys.This review serves as a crucial foundation for future research aimed at optimizing alloy design and processing methods.
基金financially supported by the National Natural Science Foundation of China(51971071 and 52075112)Fundamental Research Projects of Science&Technology Innovation and development Plan in Yantai City(2022JCYJ023)。
文摘The in-situ growing approach was utilized in this article to construct the magnesium–aluminum layered double hydroxide(MgAl-LDH)film on the surface of a 1060 aluminum anodized film.To improve the corrosion resistance and friction qualities of aluminum alloy,the MgAl-LDH coating was treated using stearic acid(SA)and thiourea(TU).The aluminum substrate and anodized aluminum film layer corroded to varying degrees after 24 h of immersion in 3.5%(mass)NaCl solution,while the modified hydrotalcite film layer continued to exhibit the same microscopic morphology even after being immersed for 7 d.The results show that the synergistic action of thiourea and stearic acid can effectively improve the corrosion resistance of the MgAl-LDH substrate.The tribological testing reveals that the hydrotalcite film layer and the modified film layer lowered the friction coefficient of the anodized aluminum surface substantially.The results of the simulations and experiments demonstrate that SA forms the dense LDH-TU interlayer film layer by exchanging NO_(3)^(-)ions between TU layers on the one hand and the LDH-SA film layer by adsorption on the surface of LDH on the other.Together,these two processes create LDH-TUSA,which can significantly increase the substrate’s corrosion resistance.This synergistically modified superhydrophobic and retardant hydrotalcite film layer offers a novel approach to the investigation of wear reduction and corrosion protection on the surface of aluminum and its alloys.
基金supported by the National Natural Science Foundation of China (Nos. 50771075 and 51171133) the Program for New Century Excellent Talents in University of Ministries of the Education of China (No.NECT-07-0650)
文摘Silver or copper ions are often chosen as antibacterial agents. But a few reports are concerned with these two antibacterial agents for preparation of antibacterial stainless steel (SS). The antibacterial properties and corrosion resistance of AISI 420 stainless steel implanted by silver and copper ions were investigated. Due to the cooperative antibacterial effect of silver and copper ions, the Ag/Cu implanted SS showed excellent antibacterial activities against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) at a total implantation dose of 2~ 1017 ions/cm2. Electrochemical polarization curves revealed that the corrosion resistance of Ag/Cu implanted SS was slightly enhanced as compared with that of un-implanted SS, The implanted layer was characterized by X-ray photoelec- tron spectroscopy (XPS). Core level XPS spectra indicate that the implanted silver and copper ions exist in metallic state in the implanted layer.
基金Project(20921002)supported by the Innovative Research Groups of the National Natural Science Foundation of ChinaProject(21221061)supported by the National Natural Science Foundation of China+1 种基金Project(201105007)supported by the Science and Technology Program of Jilin Province,ChinaProject(20140325003GX)supported by the Science and Technology Support Project of Jilin Province,China
文摘Mg?1Zn?0.5Ca alloys were prepared by traditional steel mould casting and water-cooled copper mould injection casting at higher cooling rate. Microstructure, mechanical properties and bio-corrosion resistance of two alloys were contrastively investigated. Grain size reduces remarkably and microstructure becomes homogenous when raising cooling rate. The bio-corrosion behaviour in 3.5% sodium chloride solution (3.5% NaCl) and Hank’s solution at 37°C was investigated using electrochemical polarization measurement and the results indicate that the alloy prepared at higher cooling rates has better corrosion resistance in both types of solution. Further mass loss immersion test in Hank’s solution reveals the same result. The reason of corrosion resistance improvement is that raising cooling rate brings about homogeneous microstructure, which leads to micro-galvanic corrosion alleviation. The tensile test results show that yield strength, ultimate tensile strength and elongation are improved by raising cooling rate and the improvement is mainly due to grain refinement.
基金The authors would like to thank Iran National Science Foundation and the research board of Sharif University of Technology,Tehran,Iran,for the financial support and the provision of research facilities used in this work.
文摘During the recent years,some Mg based alloys have extensively been considered as a new generation of degradable and absorbable bio-medical materials.In this work,the Mg-2Zn-1Gd-1Ca(wt%)alloy as a new metallic bio-material was produced by the casting process followed by the heat treatment.The samples of the alloy were solution treated at temperatures of 500,550,and 600°C and then quench aged at temperatures of 125,150,and 175°C.The results of SEM-EDS examinations indicated that the alloy microstructure consists ofα-Mg matrix and the Ca_(2)Mg_(6)Zn_(3)and Mg_(3)Gd_(2)Zn_(3)secondary phases.With regard to the results of Vickers hardness test,the temperatures of 500°C and 150°C were selected as the optimum solutionizing and aging temperatures,respectively.Moreover,the dissolution of casting precipitates and production of lattice distortion occurring after the solution treatment led to the reduction in ultimate shear strength up to 21%.But,the precipitation hardening and morphological changes taking place during the aging treatment improved the ultimate shear strength up to 32%.Furthermore,the results of electro-chemical and weight-loss measurements in a simulated body fluid indicated that the heat-treated alloy is a promising candidate for the Mg based alloys recently considered for the bio-medical applications.
基金funded by the National Natural Science Foundation of China(No.50571073)the Ph.D.Programs Foundation of the Ministry of Education of China(20111402110004)the Natural Science Foundation of Shanxi Province(Nos.2009011028-3 and 2012011022-1)
文摘In this study, Ce was introduced into the AZ80 alloy and the effects of Ce addition on the microstructure, mechanical properties and corrosion resistance of the as-cast AZ80 magnesium alloy were investigated. The results show that the addition of Ce into the AZ80 alloy can not only refine the microstructure, but also result in the formation of the needle-like Al4Ce phase. These tiny Al4Ce phases are homogeneously distributed at grain boundaries and within grains. An appropriate Ce addition can also change the β-Mg17Al12 phase at the grain boundaries from continuous network to small island-like. At the same time, with the increase of Ce content from 0 to 2.0wt.%, the macro-hardness of the as-cast alloy is enhanced linearly, while impact toughness, tensile strength and elongation all firstly increase and then decrease. The AZ80 alloy containing 1.0wt.% Ce exhibits the optimal properties. Its macro-hardness, impact toughness, tensile strength and elongation are 61.90 HB, 15.50 J·cm-2, 171.80 MPa and 3.35%, increase by 9.95%, 63%, 13.3% and 36.7%, respectively compared with the base alloy. In addition, Ce can enhance the corrosion resistance of the AZ80 magnesium alloy.
基金National Natural Science Foundation of China(Grant No.51975123)Fujian Provincial Natural Science Foundation of China(Grant No.2020J05115)+1 种基金Fuzhou Municipal Science and Technology Plan Project of China(Grant No.2020-PT-148)Quanzhou Municipal Science and Technology Plan Project of China(Grant No.2020C043R).
文摘Laser cladding is a new surface repair method that can improve the wear and corrosion resistance of substrate surfaces.However,the cladding layer typically exhibits a rough surface,high hardness and large residual tensile stress,and thus requires further machining and finishing.Ultrasonic rolling(U-rolling)is a highly efficient finishing and strengthening process that combines ultrasonic technology with traditional rolling(T-rolling).In this study,an ironbased alloy was coated onto the surface of H13 die steel using laser cladding,and the surface of the cladding layer was polished using U-rolling.The effects of U-rolling on the surface quality,corrosion resistance and friction and wear properties of the laser-cladding layer were investigated and compared with those obtained by T-rolling.The surface roughness of the U-rolled sample was only 1/4 that of the T-rolled sample.The hardness and residual compressive stress of the laser cladding layer after U-rolling were higher than those after T-rolling.Similarly,the surface corrosion resistance of the laser cladding layer after U-rolling was higher than that after T-rolling.U-rolling changed the surface roughness,grain size,and residual stress of the material and thus affected the corrosion resistance of the laser cladding layer.The friction coefficient and wear rate of the U-rolled surface of the cladding layer were lower than those of the T-rolled surface.In addition,the tribological properties of the cladding layer were found to be related to the rolling direction.When the friction direction of the sample was the same as the rolling direction,its friction and wear performance were higher than those when the two directions were perpendicular.
基金Project(51404302)supported by the National Natural Science Foundation of ChinaProject(QJ2018003A)supported by the Youth Scientific Research Foundation of the Central South University of Forestry and Technology,China。
文摘The microstructure,mechanical properties and corrosion resistance of Zr-30%Ta and Zr-25%Ta-5%Ti alloy prepared by spark plasma sintering(SPS)technology were investigated.The experimental results showed that the Zr-Ta-Ti alloys made by the SPS processing have a low level of porosity with the relative density of 96%−98%.The analyses of XRD and TEM revealed that the Zr-30Ta alloy consists ofα+βphase,and the Zr-25Ta-5Ti alloy belongs to the nearβtype alloy containing a small amount ofαandωphases.With the addition of Ti,the elastic modulus of the alloys was decreased from(99.5±7.2)GPa for Zr-30Ta alloy to(73.6±6.3)GPa for Zr-25Ta-5Ti alloy.Furthermore,it is shown that,in comparison to CP-Ti and Ti-6Al-4V alloy,the Zr-Ta-Ti alloy produced in this work offers an improved corrosion resistance due to the more stable ZrO2 and Ta2O5 generated in the passivation film on the surface of the alloys.This study demonstrates that Zr-Ta-Ti alloys are a promising candidate of novel metallic biomaterials.
基金the State Key Project of Research and Development Plan of China (No. 2018YEB1106003)Dongguan Social Science and Technology Development Key Project (No. 2020507140148)+1 种基金Guangdong Provincial Key Laboratory of Advanced Forming of Light Metal Materials (No. 2021B1212050001)Key-area Research and Development Program of Guanggong Province (No. 2020B010186002) for supporting this research
文摘The WE43 magnesium alloy was prepared by squeeze casting,and the influence of squeeze casting parameters on mechanical properties and corrosion resistance was studied and compared with gravity casting.The gravity cast WE43 alloy shows uneven grain size distribution,and some grains even greater than 90μm.While,the grain size of the squeeze cast WE43 alloy is mainly distributed in 20-50μm.The Mg12Nd2Y phase morphology changes from large lamellar to strips after squeeze casting,whereas Mg_(24)Y_(5) phase exhibits no obvious change.The yield strength,tensile strength,and elongation of the gravity cast WE43 alloy are 127 MPa,157 MPa,and 6%,respectively,and 145 MPa,193 MPa,and 9.1%for squeeze cast alloy.For the squeeze cast WE43 alloy,the average corrosion rate is 0.6056 mm·year^(-1) according to immersion test results,and according to electrochemical measurements,the corrosion current density is 78.13μA·cm^(-2),which is better than that of the gravity cast WE43 alloy.Compared with gravity casting,the grains and second phase of the WE43 alloy by squeeze casting are refined,and the mechanical properties and corrosion resistance are improved.This may expand the applications of the WE43 alloy.
文摘This paper summarizes the corrosion behavior of Inconel 718 alloy, which is used in the oil and gas fields, including its uniform corrosion, pitting, intergranular corrosion, galvanic corrosion, stress corrosion, and hydrogen embrittlement. It also analyzes the main reasons for the good corrosion resistance of Inconel 718 alloy. This paper focuses on the effects of the heat-treatment process on corrosive behavior and provides guidelines for reasonable heat treatments in security service environments. Finally, this paper recommends further studies and applications of Inconel 718 in corrosion environments with high-temperature,high-pressure, and wet H2 S.
文摘In order to improve the mechanical property and Cl- + S2- corrosion resistance of B15 copper.nickel alloy, Cu.15Ni-xRE (x: 0-0.1% by weight) alloy was prepared by adding rare earth (RE) in melted Cu-15Ni alloy using metal mould casting method. Optical microscopy( OM), electronic tensile testing machine, X-ray diffraction ( XRD ), scanning electron microscope ( SEM ), and electrochemical testing system were used to analyze mechanical property, corrosion resistance property, and surface microstructure of different treatment samples. The results of OM and tensile testing show that the RE addition can effectively deoxidize the alloy melt and the microstructura of the alloy changes from coarse dendrite to small equlaxed grain. By addition of 0.05 % RE, the tensile strength and elongation of Cu-15Ni alloys are improved from 294 MPa to 340 MPa, and 8 % to 33.5 % respectively. The results of electrochemical testing show that the corrosion resistance of Cu-15Ni alloy is greatly improved by adding proper amount of RE, whereas excess addition of RE worsens the corrosion resistance. The optimum RE content was about 0.05 % by weight. In comparison with the alloy without RE, the corrosion potential and corrosion current density of Cu-15Ni alloy containing proper RE decreased by about - 0. 28 V and 70 A/cm2, respectively.
基金funded by the National Natural Science Foundation of China(No.51801185)Key Research Project of the Higher Education Institutions of Henan Province,Henan Provincial Department of Education,China(No.19A460007)TrainingProgram for Young Backbone Teachers of the Higher Education Institutions of Henan Province,China.
文摘The microstructure and phase evolution of Mg-10.16Li-8.14Al-1.46Er alloy of as-cast,250℃+12 h,300℃+12 h,and 400℃+12 h were studied by optical microscopy,scanning electron microscope,and X-ray diffraction.The mechanical properties of Mg-10.16Li-8.14Al-1.46Er alloy in different states were tested by microhardness tester and tension tester.The corrosion resistance of Mg-10.16Li-8.14Al-1.46Er alloy in different states was measured by electrochemical workstation combined with hydrogen evolution and mass loss tests.The results show that the microstructure of as-cast Mg-10.16Li-8.14Al-1.46Er alloy consists ofα,β,AlLi,Al3Er and MgAlLi_(2)phases.Changes of microstructure are morphology and quantity ofαphase,and second phases of MgAlLi_(2)and AlLi by heat treatments at different temperatures.The best comprehensive tensile properties of Mg-10.16Li-8.14Al-1.46Er at 400℃are attributed to theαphase structure,solution strengthening and second phase strengthening.After heat treatments at different temperatures,the corrosion resistance of Mg-10.16Li-8.14Al-1.46Er was improved compared with as-cast samples.The Mg-10.16Li-8.14Al-1.46Er alloy has the best corrosion resistance at 250℃due to the best homogenization at this temperature.
基金This work is supported by the National Key R&D Program of China(Grant No.2020YFA0405700)the Inner Mongolia Science and Technology Major Project(No.2020ZD0011).
文摘The present work investigates the effect of Ni on the microstructure,mechanical properties,and corrosion resistance of CoCrFeNi_(x)Al_(0.15)Ti_(0.1)high-entropy alloys.It was found that the appropriate addition of Ni element in the alloy is beneficial to reduce the average grain size of the alloy.The yield strength and tensile strength of the alloy underfine-grain strengthening have also been increased,whilethe ductility of the system in this study has not been significantly affected.In terms of corrosion resistance,CoCrFeNi_(x)Al_(0.15)Ti_(0.1)high-entropy alloys form a dense passive film at open circuit potential,possessing good corrosion resistance.However,with the excessive addition of Ni content in the alloy,the pitting corrosion resistance of the alloy in the environment of chloride ions will decrease due to the relative decrease of the relative content of Cr element.This work also canprovide guidancesfor the design and development of new precipitation-strengthened CoCrFeNi-based high-entropy alloys with excellent comprehensive properties.
基金financial support from the Ministry of Education and Science of the Russian Federation, Agreement No. 03.G25.31.0274 (27 May 2017)
文摘Zn is a commonly used alloying element for Mg alloys owing to its beneficial effects on mechanical properties. To improve the mechanical and corrosion properties of WE43B Mg alloys, the effects of 0–0.7wt% Zn addition on the microstructure and properties of sample alloys were investigated. Addition of Zn to as-cast WE43B alloy promoted the formation of the Mg12Nd phase;by contrast, after T6 heat treatment, the phase composition of WE43B alloys with and without Zn addition remained mostly the same. A long-period stacking ordered phase was predicted by CALPHAD calculation, but this phase was not observed in either the as-cast or heat-treated Zn-containing WE43B alloys. The optimum temperature and duration of T6 heat treatment were obtained using CALPHAD calculations and hardness measurements. Addition of Zn resulted in a slight reduction in the average grain size of the as-cast and T6 heat-treated WE43B alloys and endowed them with increased corrosion resistance with little effect on their mechanical properties.
基金financially supported by the Shanghai Materials Genome Institute No. 5 (No. 16DZ2260605)the Shanghai Sailing Program (No. 17YF1405400)the Project to Strengthen Industrial Development at the Grass-roots Level (No. TC160A310/19)
文摘The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile experiments. The microstructural anisotropy of SLMed 316 L SS was also investigated by electron back-scattered diffraction and transmission electron microscopy. The grain sizes of the SLMed 316 L SS in the XOZ plane were smaller than those of the SLMed 316 L SS in the XOY plane, and a greater number of low-angle boundaries were present in the XOY plane, resulting in lower elongation for the XOY plane than for the XOZ plane. The SLMed 316 L was expected to exhibit higher strength but lower ductility than the wrought 316 L, which was attributed to the high density of dislocations. The pitting potentials of the SLMed 316 L samples were universally higher than those of the wrought sample in chloride solutions because of the annihilation of MnS or(Ca,Al)-oxides during the rapid solidification. However, the molten pool boundaries preferentially dissolved in aggressive solutions and the damage of the SLMed 316 L in FeCl3 solution was more serious after long-term service, indicating poor durability.
基金financially supported by the National Natural Science Foundation of China(51665012)the Jiangxi province Science Foundation for Outstanding Scholarship(20171BCB23061,2018ACB21020)
文摘In this present work, Pb was applied in the Mg97Zn1Y2 alloy to improve its microstructure and properties, using conventional casting methods. The microstructure and properties of the Mg97 Zn1 Y2 alloy and Mg97Zn1Y2-x Pb(x=0.6 wt.%, 1.2 wt.% and 1.8 wt.%) alloys were observed by optical microscopy, scanning electron microscopy method and analyzed by X-ray diffraction, hardness and strength measurement and electrochemical testing. After adding Pb to the Mg97Zn1Y2 alloy, a new particle phase Mg_2 Pb was identified along the grain boundaries, and dendrites were refined. In addtion, the hardness of Mg97Zn1Y2-xPb(x=0.6 wt.%, 1.2 wt.% and 1.8 wt.%) alloys was higher than that of the Mg97 Zn1Y2 alloy; with the increase of Pb content, the hardness of the alloy increased first and then decreased, followed by a final slight increase, and reached a maximum of 89.1 HV when the Pb content was 0.6 wt.%. The strength of the alloy increased first and then decreased as the Pb content increased. Moreover, adding a small amount of Pb to the alloy can effectively inhibit corrosion, and Mg97Zn1Y2-0.6 wt.%Pb exhibits the best corrosion resistance ability.
基金Project supported by the Science and Technology Major Project of Guangxi Province(AA18242023-1)the National Key R&D Program of China(2016YFB0700901)+1 种基金the National Natural Science Foundation of China(51761007)the Natural Science Foundation of Guangxi Province(2017AD23031,AD17292001)。
文摘New energy vehicles and offshore wind power industries have a high demand for sintered Nd-Fe-B magnets with high intrinsic coercivity and high corrosion resistance.In this study,the magnetic properties,anticorrosion properties,and micro structure of Nd-Fe-B sintered magnets with the intergranular addition of low-melting-point eutectic Tb_(68)Ni_(32) alloy powders were investigated.The aim is to determine if the addition of Tb_(68)Ni_(32) can improve these properties.A low melting-point eutectic alloy Tb_(68)Ni_(32) powders was prepared as a grain boundary additive and blended with the master alloy powders prior to sintering.The coercivity of the resultant magnets gradually increases from 1468 to 2151 kA/m by adding increasing amounts of Tb_(68)Ni_(32).At the same time,the remanence first increases and then slightly decreases.After studying the microstructure and elemental composition of the Tb_(68)Ni_(32) added magnets,it is found that the significant increase in coercivity and the negligible reduction in remanence is due to densificatio n,improved grain orientation,a unifo rm and continuous boundary phase distribution,as well as the generation of a(Nd,Pr,Tb)_(2) Fe_(14)B "core-shell" structure surrounding the main-phase grain.Moreover,the corrosion resistance of the magnet is greatly improved owing to the enhancement of electrochemical stability,as well as the optimization of the distribution and morphology of the intergranular phase.
基金Project(2070950)supported by the Key Research Projects of the Ministry of Education,ChinaProject(KJ070617)supported by theChongqing Municipal Education Commission,China
文摘Aluminum films with thickness of 8.78-20.82μm were deposited on the AZ31B magnesium alloys by DC magnetron sputtering.The influences of aluminum film on the micro-mechanical properties and corrosion behavior of the magnesium alloys were investigated.The morphology of aluminum film was examined by scanning electron microscopy and the microstructure of aluminum film was analyzed by X-ray diffiactometry.Nanoindentation and nanoscratch tests were conducted to investigate their micromechanical properties.Moreover,potentiodynamical polarization test performed in 3.5%NaCl solution was carried out to study their anticorrosion performances.The results show that the surface hardness of AZ31B magnesium alloy with aluminum film is 1.38-2.01 GPa,higher than that of the magnesium alloy substrate.The critical load of Al film/AZ31B substrate is in the range of 0.68-2.77 N. The corrosion current density of AZ31B with aluminum film is 2-3 orders of magnitude less than that of bare AZ31B.And the corrosion potential with aluminum film positively shifts.Thus aluminum film can increase the corrosion resistance of Mg alloys obviously.