After analyzing the phenomena and processes of hydrogen embrittlement of NdFeB permanent magnets, RF magnetron sputtering was used to fabricate Al thin films and then oxidized to form the Al/Al_2O_3 composite films on...After analyzing the phenomena and processes of hydrogen embrittlement of NdFeB permanent magnets, RF magnetron sputtering was used to fabricate Al thin films and then oxidized to form the Al/Al_2O_3 composite films on the magnets as the hydrogen resistance coatings. SEM and EDS were used to examine the morphology and composition respectively. Hydrogen resistance performance was tested by exposing the magnets in 10 MPa hydrogen gas at room temperature. The results show that the magnets with 8 μm Al/Al_2O_3 coatings can withstand hydrogen of 10 MPa for 65 min without being embrittled into powder. The samples with and without hydrogen resistance coatings have almost the same magnetic properties.展开更多
A phosphate solution free of chromate, fluoride and nitrite was prepared and an environment-friendly film was obtained on AZ31 magnesium alloy surface via the chemical deposition method. The morphology, composition, p...A phosphate solution free of chromate, fluoride and nitrite was prepared and an environment-friendly film was obtained on AZ31 magnesium alloy surface via the chemical deposition method. The morphology, composition, phase structure and its corrosion resistance were studied. The effects of film-forming temperature and free acid on corrosion resistance, microstructure and electrochemical behavior of the film were discussed. The results indicate that the corrosion resistance of AZ31 with the phosphate film was better than blank AZ31 substrate, which was most attributed to the great inhibitive action on the anodic dissolution and cathodic hydrogen evolution of the film.展开更多
This paper summarizes the corrosion behavior of Inconel 718 alloy, which is used in the oil and gas fields, including its uniform corrosion, pitting, intergranular corrosion, galvanic corrosion, stress corrosion, and ...This paper summarizes the corrosion behavior of Inconel 718 alloy, which is used in the oil and gas fields, including its uniform corrosion, pitting, intergranular corrosion, galvanic corrosion, stress corrosion, and hydrogen embrittlement. It also analyzes the main reasons for the good corrosion resistance of Inconel 718 alloy. This paper focuses on the effects of the heat-treatment process on corrosive behavior and provides guidelines for reasonable heat treatments in security service environments. Finally, this paper recommends further studies and applications of Inconel 718 in corrosion environments with high-temperature,high-pressure, and wet H2 S.展开更多
This study investigated the susceptibility of X80 pipeline steel to hydrogen embrittlement given different hydrogen pre-charging times and hydrogen charging–releasing–recharging cycles in H2S environment.The fractur...This study investigated the susceptibility of X80 pipeline steel to hydrogen embrittlement given different hydrogen pre-charging times and hydrogen charging–releasing–recharging cycles in H2S environment.The fracture strain of the steel samples decreased with increasing hydrogen pre-charging time;this steel degradation could almost be recovered after diffusible hydrogen was removed when the hydrogen pre-charging time was<8 d.However,unrecoverable degeneration occurred when the hydrogen pre-charging time extended to 16–30 d.Moreover,nanovoid formation meant that the hydrogen damage to the steel under intermittent hydrogen pre-charging–releasing–recharging conditions was more serious than that under continuous hydrogen pre-charging conditions.This study illustrated that the mechanical degradation of steel is inevitable in an H2S environment even if diffusible hydrogen is removed or visible hydrogen-induced cracking is neglected.Furthermore,the steel samples showed premature fractures and exhibited a hydrogen fatigue effect because the repeated entry and release of diffusible hydrogen promoted the formation of vacancies that aggregated into nanovoids.Our results provide valuable information on the mechanical degradation of steel in an H2S environment,regarding the change rules of steel mechanical properties under different hydrogen pre-charging times and hydrogen charging–releasing–recharging cycles.展开更多
The effects of shielding gas and post weld heat treatment on the pitting resistance, stress corrosion crack- ing and hydrogen embrittlement of supermartensitic stainless steel deposits were studied. Two all-weld-metal...The effects of shielding gas and post weld heat treatment on the pitting resistance, stress corrosion crack- ing and hydrogen embrittlement of supermartensitic stainless steel deposits were studied. Two all-weld-metal test coupons were prepared using a metal-cored wire under Ar+ 5% He and Ar+18%CO2 gas shielding mixtures. Solubi- lizing and solubilizing plus double tempering heat treatments were done with the objective of achieving different mi crostructural results, The samples welded under Ar+5% He showed higher pitting corrosion resistance, for all post weld heat treatments, than those welded under Ar+18% CO2. The different post weld heat treatments generated higher susceptibility to this corrosion mechanism. None of the samples presented signs of stress corrosion cracking, but in those subjected to the heat treatment, grain boundary selective attack was observed, on the surfaces of all the samples studied. The samples with highest hardness were more susceptible to hydrogen damage, thereby leading to reduced tensile strength on this condition.展开更多
Hydrogen embrittlement (HE) is a dangerous reaction that puzzled the material world for a long time. Hydrogen embrittlement is a type of deterioration which can be linked to corrosion and corrosion-control processes. ...Hydrogen embrittlement (HE) is a dangerous reaction that puzzled the material world for a long time. Hydrogen embrittlement is a type of deterioration which can be linked to corrosion and corrosion-control processes. It involves the introduction of hydrogen into a component, an event that can seriously reduce the ductility and load-bearing capacity, cause cracking and catastrophic brittle failures at stresses below the yield stress of susceptible materials. Presently this phenomenon is not completely understood and hydrogen embrittlement detection, in particular, seems to be one of the most difficult aspects of the problem. Although the process cannot be understand completely, method such as baking can reverse the process of hydrogen embrittlement and RSL (Rising Step Load) testing presents an excellent way to test the susceptibility to hydrogen embrittlement in the steel and its alloys. Different specimens were made to facilitate the testing. This study determines the effect of coating process have on the brittleness of the material and use of RSL (Risisng Step Load) mechanical loading test method to qualify plating processes for the risk of internal hydrogen embrittlement. The paper introduces the different causes of the hydrogen embrittlement, especially the zinc coating process and the hot dip galvanizing process. Subsequently, hydrogen embrittlement prevention and testing are discussed, as well as the current McGill-established RSL (Rising Step Load) bend testing’s principle, potential set-up, tested specimens and some of the critical results. Finally, some of the future development of the hydrogen embrittlement prevention will be covered.展开更多
The hydrogen permeation behavior and stress corrosion cracking (SCC) susceptibility of precharged 7075-T6 A1 alloy were inves- tigated in this paper. Devanthan-Stachurski (D-S) cell tests were used to measure the ...The hydrogen permeation behavior and stress corrosion cracking (SCC) susceptibility of precharged 7075-T6 A1 alloy were inves- tigated in this paper. Devanthan-Stachurski (D-S) cell tests were used to measure the apparent hydrogen diffusivity and hydrogen permeation current density of specimens immersed in 3.5wt% NaCl solution. Electrochemical experiment results show that the SCC susceptibility is low during anodic polarization. Both corrosion pits and hydrogen-induced cracking are evident in scanning electron microscope images after the specimens have been charging for 24 h.展开更多
Hydrogen evolution reaction is inevitable during the corrosion of Mg alloys.The effect of hydrogen on the corrosion behavior of the Mg-2Zn and Mg-5Zn alloys is investigated by charging hydrogen treatment.The surface m...Hydrogen evolution reaction is inevitable during the corrosion of Mg alloys.The effect of hydrogen on the corrosion behavior of the Mg-2Zn and Mg-5Zn alloys is investigated by charging hydrogen treatment.The surface morphologies of the samples after charging hydrogen were observed using a scanning electron microscopy(SEM)and the corrosion resistance was evaluated by polarization curves.It is found that there are oxide films formed on the surface of the charged hydrogen samples.The low hydrogen evolution rate is helpful to improve the corrosion resistance of Mg alloys,while the high hydrogen evolution rate can increases the defects in the films and further deteriorates their protection ability.Also,the charging hydrogen effect is greatly associated with the microstructure of Mg substrate.展开更多
The Mg0.9Ti0.1Ni1?xPdx (x= 0, 0.05, 0.1, 0.15) hydrogen storage electrode alloys were prepared by mechanical alloying. The main phases of the alloys were determined as amorphous by X-ray diffraction(XRD). The corrosio...The Mg0.9Ti0.1Ni1?xPdx (x= 0, 0.05, 0.1, 0.15) hydrogen storage electrode alloys were prepared by mechanical alloying. The main phases of the alloys were determined as amorphous by X-ray diffraction(XRD). The corrosion potentials of the alloys were measured by open circuit potential measurements and the values are ?0.478, ?0.473, ?0.473 and ?0.471 V (vs Hg/HgO electrode) for x=0, 0.05, 0.1, 0.15, respectively. The corrosion currents of the studied alloys were obtained by non-linear fitting of the anodic polarization curve using Bulter-Volmer equation and Levenberg-Marquardt algorithm, which were obtained after different cycles. The initial corrosion currents of the alloys are decreased with the increasing of Pd content. The increasing of Pd content in the alloys inhibits the corrosion rates of the electrode alloys with the progress of cycle number. The electrochemical impedance spectroscopy(EIS) was conducted after open circuit potential of the alloys stabilizing. The impedance data fit well with the theoretical values obtained by the proposed equivalent circuit model. The corrosion resistances and the thickness of surface passive film of the alloys, which were deduced by the analyses of EIS, are enhanced with the increasing of Pd content in the alloys, which are consistent with the results of corrosion rates obtained from anodic polarization measurements.展开更多
Mg-6%Al-5%Pb and Mg-6%Al-5%Pb-0.55%Zn-0.22%Mn(mass fraction) alloys were prepared by induction melting with the protection of argon.The corrosion behaviors of these alloys were studied by electrochemical measurements ...Mg-6%Al-5%Pb and Mg-6%Al-5%Pb-0.55%Zn-0.22%Mn(mass fraction) alloys were prepared by induction melting with the protection of argon.The corrosion behaviors of these alloys were studied by electrochemical measurements and immersion tests.The results show that at the corrosion onset of Mg-Al-Pb anode there is an incubation period that can be shortened with 0.55%Zn and 0.22%Mn additions in the magnesium matrix.The corrosion rate of Mg-Al-Pb anode is mainly determined by the incubation period.Short incubation period always leads to high corrosion rate while long incubation period leads to low corrosion rate.The corrosion rates based on the corrosion current density by the electrochemical measurements do not agree with the measurements evaluated from the evolved hydrogen volume.展开更多
This study aims at providing systematically insights to clarify the impact of cathodic polarization on the stress corrosion cracking(SCC)behavior of 21 Cr2 NiMo steel.Slow-strain-rate tensile tests demonstrated that 2...This study aims at providing systematically insights to clarify the impact of cathodic polarization on the stress corrosion cracking(SCC)behavior of 21 Cr2 NiMo steel.Slow-strain-rate tensile tests demonstrated that 21 Cr2 NiMo steel is highly sensitive to hydrogen embrittlement at strong cathodic polarization.The lowest SCC susceptibility occurred at-775 mV vs.SCE,whereas the SCC susceptibility was remarkably higher at potentials below-950 mV vs.SCE.Scanning electron microscopy(SEM)and electron backscattered diffraction(EBSD)revealed that the cathodic potential decline caused a transition from transgranular to intergranular mode in the fracture path.The intergranular mode transformed from bainite boundaries separation to prior austenitic grain boundaries separation under stronger cathodic polarization.Furthermore,corrosion pits promoted the nucleation of SCC cracks.In conclusion,with the decrease in the applied potential,the SCC mechanism transformed from the combination of hydrogen embrittlement and anodic dissolution to typical hydrogen embrittlement.展开更多
By the increase in Mo content,the addition of microalloying elements V and Nb and by reducing the contents of Mn,P and S based on the composition of steel 42 CrMo,we have developed a 1 300 MPa-grade high strength stee...By the increase in Mo content,the addition of microalloying elements V and Nb and by reducing the contents of Mn,P and S based on the composition of steel 42 CrMo,we have developed a 1 300 MPa-grade high strength steel(ADF1)for bolts.The sustained load bending test,sustained load tensile test and stress corrosion cracking test have been carried out to evaluate the delayed fracture resistance of steel ADFl and commercial steel 42 CrMo.The results showed that steel ADF1 has superior delayed fracture resistance to that of 42 CrMo steel.It's concluded that the superior delayed fracture resistance of ADF1 is mainly due to the increase of tempering temperature,fine homogeneously distributed MC carbide and fine prior austenite grain size.展开更多
WC powders were uniformly coated by Ni nanoparticles through a combined chemical co-precipitation and subsequent high temperature hydrogen reduction strategy(abbreviated as CM-WCN),and then were consolidated by vacuum...WC powders were uniformly coated by Ni nanoparticles through a combined chemical co-precipitation and subsequent high temperature hydrogen reduction strategy(abbreviated as CM-WCN),and then were consolidated by vacuum sintering at 1450°C for 1 h to obtain WC−Ni cemented carbides.The microstructure and properties of the as-consolidated CM-WCN were investigated.The average grain size of WC in the consolidated CM-WCN was calculated to be in the range of 3.0−3.8μm and only few pores were observed.A relative density of 99.6%,hardness of HRA 86.5 and bending strength of 1860 MPa were obtained for the CM-WCN−10wt.%Ni,and the highest impact toughness of 6.17 J/cm^(2 )was obtained for the CM-WCN−12wt.%Ni,surpassing those of the hand mixed WC−Ni(HM-WCN)cemented carbides examined in this study and the other similar materials in the literature.CM-WCN cemented carbides possess excellent mechanical properties,due to their highly uniform structure and low porosity that could be ascribed to the intergranular-dominated fracture mode accompanied by a large number of plastic deformation tears of the bonding phase.In addition,the corrosion resistance of CM-WCN was superior to that of HM-WCN at the Ni content of 6−12 wt.%.展开更多
Potentiodynamic polarization tests and slow strain rate test(SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking(SCC) behavior of 7003 aluminum al...Potentiodynamic polarization tests and slow strain rate test(SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking(SCC) behavior of 7003 aluminum alloy(AA7003) in acid and alkaline chloride solutions under various applied potentials(Ea). The results show that AA7003 is to a certain extent susceptible to SCC via anodic dissolution(AD) at open-circuit potential(OCP) and is highly susceptible to hydrogen embrittlement(HE) at high negative Ea in the solutions with p H levels of 4 and 11. The susceptibility increases with negative shift in the potential when Ea is less than-1000 m V vs. SCE. However, the susceptibility distinctly decreases because of the inhibition of AD when Ea is equal to-1000 m V vs. SCE. In addition, the SCC susceptibility of AA7003 in the acid chloride solution is higher than that in the alkaline solution at each potential. Moreover, the effect of hydrogen on SCC increases with increasing hydrogen ion concentration.展开更多
文摘After analyzing the phenomena and processes of hydrogen embrittlement of NdFeB permanent magnets, RF magnetron sputtering was used to fabricate Al thin films and then oxidized to form the Al/Al_2O_3 composite films on the magnets as the hydrogen resistance coatings. SEM and EDS were used to examine the morphology and composition respectively. Hydrogen resistance performance was tested by exposing the magnets in 10 MPa hydrogen gas at room temperature. The results show that the magnets with 8 μm Al/Al_2O_3 coatings can withstand hydrogen of 10 MPa for 65 min without being embrittled into powder. The samples with and without hydrogen resistance coatings have almost the same magnetic properties.
基金Projects (2011CL08, 2011CL01) supported by Open Fund of Material Corrosion and Protection Key Laboratory of Sichuan Province, ChinaProject (2011RC02) supported by Talent Introduction Funds of Sichuan University of ScienceProject (12ZA261) supported by Key Project of Education Department of Sichuan Province, China
文摘A phosphate solution free of chromate, fluoride and nitrite was prepared and an environment-friendly film was obtained on AZ31 magnesium alloy surface via the chemical deposition method. The morphology, composition, phase structure and its corrosion resistance were studied. The effects of film-forming temperature and free acid on corrosion resistance, microstructure and electrochemical behavior of the film were discussed. The results indicate that the corrosion resistance of AZ31 with the phosphate film was better than blank AZ31 substrate, which was most attributed to the great inhibitive action on the anodic dissolution and cathodic hydrogen evolution of the film.
文摘This paper summarizes the corrosion behavior of Inconel 718 alloy, which is used in the oil and gas fields, including its uniform corrosion, pitting, intergranular corrosion, galvanic corrosion, stress corrosion, and hydrogen embrittlement. It also analyzes the main reasons for the good corrosion resistance of Inconel 718 alloy. This paper focuses on the effects of the heat-treatment process on corrosive behavior and provides guidelines for reasonable heat treatments in security service environments. Finally, this paper recommends further studies and applications of Inconel 718 in corrosion environments with high-temperature,high-pressure, and wet H2 S.
基金financially supported by the National Natural Science Foundation of China (Nos. 51805292, 51671215, and 51425502)the National Postdoctoral Program for Innovative Talents of China (No. BX201700132)
文摘This study investigated the susceptibility of X80 pipeline steel to hydrogen embrittlement given different hydrogen pre-charging times and hydrogen charging–releasing–recharging cycles in H2S environment.The fracture strain of the steel samples decreased with increasing hydrogen pre-charging time;this steel degradation could almost be recovered after diffusible hydrogen was removed when the hydrogen pre-charging time was<8 d.However,unrecoverable degeneration occurred when the hydrogen pre-charging time extended to 16–30 d.Moreover,nanovoid formation meant that the hydrogen damage to the steel under intermittent hydrogen pre-charging–releasing–recharging conditions was more serious than that under continuous hydrogen pre-charging conditions.This study illustrated that the mechanical degradation of steel is inevitable in an H2S environment even if diffusible hydrogen is removed or visible hydrogen-induced cracking is neglected.Furthermore,the steel samples showed premature fractures and exhibited a hydrogen fatigue effect because the repeated entry and release of diffusible hydrogen promoted the formation of vacancies that aggregated into nanovoids.Our results provide valuable information on the mechanical degradation of steel in an H2S environment,regarding the change rules of steel mechanical properties under different hydrogen pre-charging times and hydrogen charging–releasing–recharging cycles.
基金APUEMFI,Argentina and ANPCyT,Argentina for financial support
文摘The effects of shielding gas and post weld heat treatment on the pitting resistance, stress corrosion crack- ing and hydrogen embrittlement of supermartensitic stainless steel deposits were studied. Two all-weld-metal test coupons were prepared using a metal-cored wire under Ar+ 5% He and Ar+18%CO2 gas shielding mixtures. Solubi- lizing and solubilizing plus double tempering heat treatments were done with the objective of achieving different mi crostructural results, The samples welded under Ar+5% He showed higher pitting corrosion resistance, for all post weld heat treatments, than those welded under Ar+18% CO2. The different post weld heat treatments generated higher susceptibility to this corrosion mechanism. None of the samples presented signs of stress corrosion cracking, but in those subjected to the heat treatment, grain boundary selective attack was observed, on the surfaces of all the samples studied. The samples with highest hardness were more susceptible to hydrogen damage, thereby leading to reduced tensile strength on this condition.
文摘Hydrogen embrittlement (HE) is a dangerous reaction that puzzled the material world for a long time. Hydrogen embrittlement is a type of deterioration which can be linked to corrosion and corrosion-control processes. It involves the introduction of hydrogen into a component, an event that can seriously reduce the ductility and load-bearing capacity, cause cracking and catastrophic brittle failures at stresses below the yield stress of susceptible materials. Presently this phenomenon is not completely understood and hydrogen embrittlement detection, in particular, seems to be one of the most difficult aspects of the problem. Although the process cannot be understand completely, method such as baking can reverse the process of hydrogen embrittlement and RSL (Rising Step Load) testing presents an excellent way to test the susceptibility to hydrogen embrittlement in the steel and its alloys. Different specimens were made to facilitate the testing. This study determines the effect of coating process have on the brittleness of the material and use of RSL (Risisng Step Load) mechanical loading test method to qualify plating processes for the risk of internal hydrogen embrittlement. The paper introduces the different causes of the hydrogen embrittlement, especially the zinc coating process and the hot dip galvanizing process. Subsequently, hydrogen embrittlement prevention and testing are discussed, as well as the current McGill-established RSL (Rising Step Load) bend testing’s principle, potential set-up, tested specimens and some of the critical results. Finally, some of the future development of the hydrogen embrittlement prevention will be covered.
基金financially supported by the Natural Science Foundation of Jiangsu Province, China (No. BK20141292)the Foundation of Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences (No. MCKF201412)
文摘The hydrogen permeation behavior and stress corrosion cracking (SCC) susceptibility of precharged 7075-T6 A1 alloy were inves- tigated in this paper. Devanthan-Stachurski (D-S) cell tests were used to measure the apparent hydrogen diffusivity and hydrogen permeation current density of specimens immersed in 3.5wt% NaCl solution. Electrochemical experiment results show that the SCC susceptibility is low during anodic polarization. Both corrosion pits and hydrogen-induced cracking are evident in scanning electron microscope images after the specimens have been charging for 24 h.
基金Thanks for the financial support by Korea Institute of Materials Science,National Key Basic Research Program of China(No.2013CB632205)the National Natural Science Foundation of China(No.51471174).
文摘Hydrogen evolution reaction is inevitable during the corrosion of Mg alloys.The effect of hydrogen on the corrosion behavior of the Mg-2Zn and Mg-5Zn alloys is investigated by charging hydrogen treatment.The surface morphologies of the samples after charging hydrogen were observed using a scanning electron microscopy(SEM)and the corrosion resistance was evaluated by polarization curves.It is found that there are oxide films formed on the surface of the charged hydrogen samples.The low hydrogen evolution rate is helpful to improve the corrosion resistance of Mg alloys,while the high hydrogen evolution rate can increases the defects in the films and further deteriorates their protection ability.Also,the charging hydrogen effect is greatly associated with the microstructure of Mg substrate.
基金Project(20473091) supported by the National Natural Science Foundation of China
文摘The Mg0.9Ti0.1Ni1?xPdx (x= 0, 0.05, 0.1, 0.15) hydrogen storage electrode alloys were prepared by mechanical alloying. The main phases of the alloys were determined as amorphous by X-ray diffraction(XRD). The corrosion potentials of the alloys were measured by open circuit potential measurements and the values are ?0.478, ?0.473, ?0.473 and ?0.471 V (vs Hg/HgO electrode) for x=0, 0.05, 0.1, 0.15, respectively. The corrosion currents of the studied alloys were obtained by non-linear fitting of the anodic polarization curve using Bulter-Volmer equation and Levenberg-Marquardt algorithm, which were obtained after different cycles. The initial corrosion currents of the alloys are decreased with the increasing of Pd content. The increasing of Pd content in the alloys inhibits the corrosion rates of the electrode alloys with the progress of cycle number. The electrochemical impedance spectroscopy(EIS) was conducted after open circuit potential of the alloys stabilizing. The impedance data fit well with the theoretical values obtained by the proposed equivalent circuit model. The corrosion resistances and the thickness of surface passive film of the alloys, which were deduced by the analyses of EIS, are enhanced with the increasing of Pd content in the alloys, which are consistent with the results of corrosion rates obtained from anodic polarization measurements.
基金Project(JPPT-115-168) supported by National Key Science and Technological Project of China
文摘Mg-6%Al-5%Pb and Mg-6%Al-5%Pb-0.55%Zn-0.22%Mn(mass fraction) alloys were prepared by induction melting with the protection of argon.The corrosion behaviors of these alloys were studied by electrochemical measurements and immersion tests.The results show that at the corrosion onset of Mg-Al-Pb anode there is an incubation period that can be shortened with 0.55%Zn and 0.22%Mn additions in the magnesium matrix.The corrosion rate of Mg-Al-Pb anode is mainly determined by the incubation period.Short incubation period always leads to high corrosion rate while long incubation period leads to low corrosion rate.The corrosion rates based on the corrosion current density by the electrochemical measurements do not agree with the measurements evaluated from the evolved hydrogen volume.
基金financially supported by the National Science and Technology Major Project,China(No.2017-Ⅶ0012-0109)。
文摘This study aims at providing systematically insights to clarify the impact of cathodic polarization on the stress corrosion cracking(SCC)behavior of 21 Cr2 NiMo steel.Slow-strain-rate tensile tests demonstrated that 21 Cr2 NiMo steel is highly sensitive to hydrogen embrittlement at strong cathodic polarization.The lowest SCC susceptibility occurred at-775 mV vs.SCE,whereas the SCC susceptibility was remarkably higher at potentials below-950 mV vs.SCE.Scanning electron microscopy(SEM)and electron backscattered diffraction(EBSD)revealed that the cathodic potential decline caused a transition from transgranular to intergranular mode in the fracture path.The intergranular mode transformed from bainite boundaries separation to prior austenitic grain boundaries separation under stronger cathodic polarization.Furthermore,corrosion pits promoted the nucleation of SCC cracks.In conclusion,with the decrease in the applied potential,the SCC mechanism transformed from the combination of hydrogen embrittlement and anodic dissolution to typical hydrogen embrittlement.
基金Sponsored by National Key Fundamental Research Project(G1998061503)
文摘By the increase in Mo content,the addition of microalloying elements V and Nb and by reducing the contents of Mn,P and S based on the composition of steel 42 CrMo,we have developed a 1 300 MPa-grade high strength steel(ADF1)for bolts.The sustained load bending test,sustained load tensile test and stress corrosion cracking test have been carried out to evaluate the delayed fracture resistance of steel ADFl and commercial steel 42 CrMo.The results showed that steel ADF1 has superior delayed fracture resistance to that of 42 CrMo steel.It's concluded that the superior delayed fracture resistance of ADF1 is mainly due to the increase of tempering temperature,fine homogeneously distributed MC carbide and fine prior austenite grain size.
基金the financial supports from the National Natural Science Foundation of China (Nos. 51778213, 52078189)the Fundamental Research Funds for the Central Universities, China (No. B200202073)。
文摘WC powders were uniformly coated by Ni nanoparticles through a combined chemical co-precipitation and subsequent high temperature hydrogen reduction strategy(abbreviated as CM-WCN),and then were consolidated by vacuum sintering at 1450°C for 1 h to obtain WC−Ni cemented carbides.The microstructure and properties of the as-consolidated CM-WCN were investigated.The average grain size of WC in the consolidated CM-WCN was calculated to be in the range of 3.0−3.8μm and only few pores were observed.A relative density of 99.6%,hardness of HRA 86.5 and bending strength of 1860 MPa were obtained for the CM-WCN−10wt.%Ni,and the highest impact toughness of 6.17 J/cm^(2 )was obtained for the CM-WCN−12wt.%Ni,surpassing those of the hand mixed WC−Ni(HM-WCN)cemented carbides examined in this study and the other similar materials in the literature.CM-WCN cemented carbides possess excellent mechanical properties,due to their highly uniform structure and low porosity that could be ascribed to the intergranular-dominated fracture mode accompanied by a large number of plastic deformation tears of the bonding phase.In addition,the corrosion resistance of CM-WCN was superior to that of HM-WCN at the Ni content of 6−12 wt.%.
基金financially supported by the National Natural Science Foundation of China(No.51371039)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Jiangsu Province,China
文摘Potentiodynamic polarization tests and slow strain rate test(SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking(SCC) behavior of 7003 aluminum alloy(AA7003) in acid and alkaline chloride solutions under various applied potentials(Ea). The results show that AA7003 is to a certain extent susceptible to SCC via anodic dissolution(AD) at open-circuit potential(OCP) and is highly susceptible to hydrogen embrittlement(HE) at high negative Ea in the solutions with p H levels of 4 and 11. The susceptibility increases with negative shift in the potential when Ea is less than-1000 m V vs. SCE. However, the susceptibility distinctly decreases because of the inhibition of AD when Ea is equal to-1000 m V vs. SCE. In addition, the SCC susceptibility of AA7003 in the acid chloride solution is higher than that in the alkaline solution at each potential. Moreover, the effect of hydrogen on SCC increases with increasing hydrogen ion concentration.