期刊文献+
共找到6,233篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of Heat Treatment on Microstructure and Stress Rupture Properties of a Ni–Mo–Cr–Fe Base Corrosion-Resistant Superalloy 被引量:1
1
作者 Tao Liu Mei Yang +3 位作者 Jun-Song Wang Jia-Sheng Dong Li Wang Lang-Hong Lou 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第1期116-126,共11页
The influences of heat treatment and test condition on the microstructure and stress rupture properties of a Ni–Mo–Cr–Fe base corrosion-resistant superalloy have been investigated in this paper. Optical microscope ... The influences of heat treatment and test condition on the microstructure and stress rupture properties of a Ni–Mo–Cr–Fe base corrosion-resistant superalloy have been investigated in this paper. Optical microscope and scanning electron microscope were employed for the microstructure observation, and X-ray diffraction, electron probe micro-analyzer, and transmission electron microscope were used for phase determination. It was found that the grain size increased and the volume fractions of initial M_6C carbides decreased along with the increase in solution treatment temperature. When tested at 650 °C/320 MPa, the stress rupture lives decreased with the increase in solution treatment temperature, but the stress rupture lives increased slightly at first and then decreased for the samples solution heat treated at 1220 °C when tested at 700 °C/240 MPa. The elongations showed the descendent trends under these two conditions. The stress rupture life and elongation for the aged samples all showed a noticeable improvement at 650 °C/320 MPa, but there was no noticeable improvement at 700 °C/240 MPa. The reasons can be attributed to the grain size, test conditions, and the initial and secondary carbides. 展开更多
关键词 corrosion-resistant superalloy Heat treatment Stress RUPTURE properties SECONDARY carbides
原文传递
A review of linear friction welding of Ni -based superalloys 被引量:2
2
作者 Xiawei Yang Tingxi Meng +6 位作者 Qiang Chu Yu Su Zhenguo Guo Rui Xu Wenlong Fan Tiejun Ma Wenya Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1382-1391,共10页
Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion,radiation,... Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion,radiation,fatigue resistance,and high-temperature strength.Linear friction welding(LFW)is a new joining technology with near-net-forming characteristics that can be used for the manu-facture and repair of a wide range of aerospace components.This paper reviews published works on LFW of Ni-based superalloys with the aim of understanding the characteristics of frictional heat generation and extrusion deformation,microstructures,mechanical proper-ties,flash morphology,residual stresses,creep,and fatigue of Ni-based superalloy weldments produced with LFW to enable future optim-um utilization of the LFW process. 展开更多
关键词 Ni-based superalloys linear friction welding MICROSTRUCTURES mechanical properties flash morphology
下载PDF
Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature 被引量:3
3
作者 Hui Xu Shufeng Yang +4 位作者 Enhui Wang Yunsong Liu Chunyu Guo Xinmei Hou Yanling Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期138-145,共8页
A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isotherm... A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted. 展开更多
关键词 Ni-based superalloy GH4738 extreme temperature competitive oxidation oxidation mechanism oxidation kinetics
下载PDF
Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys 被引量:1
4
作者 Zongli Yi Jiguo Shan +2 位作者 Yue Zhao Zhenlin Zhang Aiping Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1072-1088,共17页
Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at ... Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary. 展开更多
关键词 nickel-based superalloy fusion welding liquation cracking cracking mechanism cracking suppression
下载PDF
Effect of Ti and Ta content on the oxidation resistance of Co-Ni-based superalloys 被引量:1
5
作者 Yuheng Zhang Zixin Li +2 位作者 Yunwei Gui Huadong Fu Jianxin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期351-361,共11页
Co-Ni-based superalloys are known for their capability to function at elevated temperatures and superior hot corrosion and thermal fatigue resistance.Therefore,these alloys show potential as crucial high-temperature s... Co-Ni-based superalloys are known for their capability to function at elevated temperatures and superior hot corrosion and thermal fatigue resistance.Therefore,these alloys show potential as crucial high-temperature structural materials for aeroengine and gas turbine hot-end components.Our previous work elucidated the influence of Ti and Ta on the high-temperature mechanical properties of alloys.However,the intricate interaction among elements considerably affects the oxidation resistance of alloys.In this paper,Co-35Ni-10Al-2W-5Cr-2Mo-1Nb-xTi-(5−x)Ta alloys(x=1,2,3,4)with varying Ti and Ta contents were designed and compounded,and their oxidation resistance was investigated at the temperature range from 800 to 1000℃.After oxidation at three test conditions,namely,800℃for 200 h,900℃for 200 h,and 1000℃for 50 h,the main structure of the oxide layer of the alloy consisted of spinel,Cr_(2)O_(3),and Al_(2)O_(3)from outside to inside.Oxides consisting of Ta,W,and Mo formed below the Cr_(2)O_(3)layer.The interaction of Ti and Ta imparted the highest oxidation resistance to 3Ti2Ta alloy.Conversely,an excessive amount of Ti or Ta resulted in an adverse effect on the oxidation resistance of the alloys.This study reports the volatilization of W and Mo oxides during the oxidation process of Co-Ni-based cast superalloys with a high Al content for the first time and explains the formation mechanism of holes in the oxide layer.The results provide a basis for gaining insights into the effects of the interaction of alloying elements on the oxidation resistance of the alloys they form. 展开更多
关键词 Co-Ni-based superalloys high-temperature oxidation Ti and Ta elements formation mechanism of holes
下载PDF
Transient liquid phase bonding of DD5 superalloy using a designed interlayer: microstructure and mechanical properties 被引量:1
6
作者 周昌杰 范骁乐 +3 位作者 朱立华 陈闯 贺建超 计红军 《China Welding》 CAS 2024年第2期1-10,共10页
Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmen... Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmental service are inevitable challenges for turbine blades.Therefore,bonding techniques play a very important role in the manufacturing and repair of turbine blades.The transient liquid phase(TLP)bonding of DD5 Ni-based single crystal superalloy was performed using the designed H1 interlayer.A new third-generation Ni-based superalloy T1 powder was mixed with H1 powder as another interlayer to improve the mechanical properties of the bonded joints.The res-ults show that,such a designed H1 interlayer is beneficial to the improvement of shear strength of DD5 alloy bonded joints by adjusting the bonding temperature and the prolongation of holding time.The maximum shear strength at room temperature of the joint with H1 interlayer reached 681 MPa when bonded at 1260℃for 3 h.The addition of T1 powder can effectively reduce holding time or relatively lower bond-ing temperature,while maintaining relatively high shear strength.When 1 wt.%T1 powder was mixed into H1 interlayer,the maximum room temperature shear strength of the joint bonded at 1260℃reached 641 MPa,which could be obtained for only 1 h.Considering the bonding temperature and the efficiency,the acceptable process parameter of H1+5 wt.%T1 interlayer was 1240℃/2 h,and the room tem-perature shear strength reached 613 MPa. 展开更多
关键词 Ni-based superalloy powder transient liquid phase bonded joint shear strength
下载PDF
A novel high-Cr CoNi-based superalloy with superior high-temperature microstructural stability, oxidation resistance and mechanical properties
7
作者 Xiaorui Zhang Min Zou +3 位作者 Song Lu Longfei Li Xiaoli Zhuang Qiang Feng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1373-1381,共9页
A novel multicomponent high-Cr CoNi-based superalloy with superior comprehensive performance was prepared,and the evaluation of its high-temperature microstructural stability,oxidation resistance,and mechanical proper... A novel multicomponent high-Cr CoNi-based superalloy with superior comprehensive performance was prepared,and the evaluation of its high-temperature microstructural stability,oxidation resistance,and mechanical properties was conducted mainly using its cast polycrystalline alloy.The results disclosed that the morphology of theγ′phase remained stable,and the coarsening rate was slow during the long-term aging at 900–1000℃.The activation energy forγ′precipitate coarsening of alloy 9CoNi-Cr was(402±51)kJ/mol,which is higher compared with those of CMSX-4 and some other Ni-based and Co-based superalloys.Importantly,there was no indica-tion of the formation of topologically close-packed phases during this process.All these factors demonstrated the superior microstructural stability of the alloy.The mass gain of alloy 9CoNi-Cr was 0.6 mg/cm^(2) after oxidation at 1000℃ for 100 h,and the oxidation resistance was comparable to advanced Ni-based superalloys CMSX-4,which can be attributed to the formation of a continuous Al_(2)O_(3) protective layer.Moreover,the compressive yield strength of this cast polycrystalline alloy at high temperatures is clearly higher than that of the conventional Ni-based cast superalloy and the compressive minimum creep rate at 950℃ is comparable to that of the conventional Ni-based cast superalloy,demonstrating the alloy’s good mechanical properties at high temperature.This is partially because high Cr is bene-ficial in improving theγandγ′phase strengths of alloy 9CoNi-Cr. 展开更多
关键词 CoNi-based superalloys microstructure COARSENING OXIDATION mechanical properties
下载PDF
Versatile fluidity test model for cast superalloys and comparison between IN718 and IN939
8
作者 Jun ZHANG Zi-qi JIE +1 位作者 Miao-nan LIU Min GUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2881-2888,共8页
A spiral fluidity test model of superalloys with 10 mm in height and 3 mm in thickness was designed to evaluate the fluidity of two distinct Ni-based superalloys IN718 and IN939.The factors influencing fluidity are as... A spiral fluidity test model of superalloys with 10 mm in height and 3 mm in thickness was designed to evaluate the fluidity of two distinct Ni-based superalloys IN718 and IN939.The factors influencing fluidity are ascertained through comparative analysis utilizing methodologies such as JMat Pro,differential scanning calorimetry and high-temperature confocal laser scanning microscopy.The results show that under identical testing conditions,the fluidity of the IN939 superalloy surpasses that of the IN718 superalloy.When subjected to the same temperature,the melt viscosity and surface tension of IN939 superalloy are considerably reduced relative to those of IN718 superalloy,which is beneficial to improving the melt fluidity.Furthermore,the liquidus temperature and solidification range for the IN939 superalloy are both smaller compared with those of the IN718 superalloy.This condition proves advantageous in delaying dendrite coherency,thereby improving fluidity. 展开更多
关键词 FLUIDITY solidification range superalloyS surface tension VISCOSITY
下载PDF
Cracking on a nickel-based superalloy fabricated by direct energy deposition
9
作者 Xue Zhang Ya-hang Mu +4 位作者 Liang Ma Jing-jing Liang Yi-zhou Zhou Xiao-feng Sun Jin-guo Li 《China Foundry》 SCIE EI CAS CSCD 2024年第4期311-318,共8页
Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This s... Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This study extensively examines the impact of solidification process,microstructural evolution,and stress concentration on crack initiation during direct energy deposition(DED).The results emphasize that the crack formation is significantly related to large-angle grain boundaries,rapid cooling rates.Cracks caused by large-angle grain boundaries and a fast-cooling rate predominantly appear near the edge of the deposited samples.Liquation cracks are more likely to form near the top of the deposited sample,due to the presence ofγ/γ'eutectics.The secondary dendritic arm and the carbides in the interdendritic regions can obstruct liquid flow during the final stage of solidification,which results in the formation of solidification cracks and voids.This work paves the way to avoid cracks in nickel-based superalloys fabricated by DED,thereby enhancing the performance of superalloys. 展开更多
关键词 LOCATION cracks direct energy deposition nickel-based superalloys
下载PDF
Oxidation behavior of 4774DD1 Ni-based single-crystal superalloy at 980℃ in air
10
作者 Yu Fang Ya-zhou Li +7 位作者 Qiang Yang Qun-gong He Xiu-fang Gong Qian Duan Hai-yang Song Fu Wang Qiong-yuan Zhang Hong Zeng 《China Foundry》 SCIE EI CAS CSCD 2024年第2期116-124,共9页
The oxidation behavior of a novel Ni-based single-crystal 4774DD1 superalloy for industrial gas turbine applications was investigated by the isothermal oxidation at 980℃ and discontinuous oxidation weight gain method... The oxidation behavior of a novel Ni-based single-crystal 4774DD1 superalloy for industrial gas turbine applications was investigated by the isothermal oxidation at 980℃ and discontinuous oxidation weight gain methods.The phase constitution and morphology of surface oxides and the characteristics of the crosssection oxide film were analyzed by XRD,SEM and EDS.Results show that the oxidation kinetics of the 4774DD1 superalloy follows the cubic law,indicating its weak oxidation resistance at this temperature.As the oxidation time increases,the composition of the oxide film evolves as following:One layer consisting of a bottom Al_(2)O_(3)sublayer and an upper(Al_(2)O_(3)+NiO)mixture sublayer after oxidized for 25 h.Then,two layers composed of an outermost small NiO discontinuous grain layer and an internal layer for 75 h.This internal layer is consisted of the bottom Al_(2)O_(3)sublayer,an intermediate narrow CrTaO_(4)sublayer,and an upper(Al_(2)O_(3)+NiO)mixture sublayer.Also two layers comprising an outermost relative continuous NiO layer with large grain size and an internal layer as the oxidation time increases to 125 h.This internal layer is composed of the upper(Al_(2)O_(3)+NiO)mixture sublayer,an intermediate continuous(CrTaO_(4)+NiWO_(4))mixture sublayer,and a bottom Al_(2)O_(3)sublayer.Finally,three layers consisting of an outermost(NiAl2O_(4)+NiCr2O_(4))mixture layer,an intermediate(CrTaO_(4)+NiWO_(4))mixture layer,and a bottom Al_(2)O_(3)layer for 200 h. 展开更多
关键词 nickel-base single crystal superalloy oxidation kinetics oxide film MICROSTRUCTURE mechanism
下载PDF
Structure characterization of the oxide film on FGH96 superalloy powders with various oxidation degrees
11
作者 Yang Liu Yufeng Liu +6 位作者 Sha Zhang Lin Zhang Peng Zhang Shaorong Zhang Na Liu Zhou Li Xuanhui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2037-2047,共11页
The structure of the oxide film on FGH96 alloy powders significantly influences the mechanical properties of superalloys.In this study,FGH96 alloy powders with various oxygen contents were investigated using high-reso... The structure of the oxide film on FGH96 alloy powders significantly influences the mechanical properties of superalloys.In this study,FGH96 alloy powders with various oxygen contents were investigated using high-resolution transmission electron microscopy and atomic probe technology to elucidate the structure evolution of the oxide film.Energy dispersive spectrometer analysis revealed the presence of two distinct components in the oxide film of the alloy powders:amorphous oxide layer covering the γ matrix and amorphous oxide particles above the carbide.The alloying elements within the oxide layer showed a laminated distribution,with Ni,Co,Cr,and Al/Ti,which was attributed to the decreasing oxygen equilibrium pressure as oxygen diffused from the surface into the γ matrix.On the other hand,Ti enrichment was observed in the oxide particles caused by the oxidation and decomposition of the carbide phase.Comparative analysis of the oxide film with oxygen contents of 140,280,and 340 ppm showed similar element distributions,while the thickness of the oxide film varies approximately at 9,14,and 30 nm,respectively.These findings provide valuable insights into the structural analysis of the oxide film on FGH96 alloy powders. 展开更多
关键词 Ni-based superalloys surface structure oxide layer thickness oxidation behavior element distribution
下载PDF
Effect of hot isostatic pressure on the microstructure and tensile properties of γ'-strengthened superalloy fabricated through induction-assisted directed energy deposition
12
作者 Jianjun Xu Hanlin Ding +1 位作者 Xin Lin Feng Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1089-1097,共9页
The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples... The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics. 展开更多
关键词 directed energy deposition Ni-based superalloys high-temperature preheating hot isostatic pressing MICROSTRUCTURE tensile properties
下载PDF
Microstructure,segregation and precipitate evolution in directionally solidified GH4742 superalloy 被引量:7
13
作者 Shulei Yang Shufeng Yang +3 位作者 Wei Liu Jingshe Li Jinguo Gao Yi Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期939-948,共10页
The evolution of microstructure,elemental segregation,and precipitation in GH4742 superalloy under a wide range of cooling rates was investigated using zonal melting liquid metal cooling(ZMLMC) experiments.Comparing v... The evolution of microstructure,elemental segregation,and precipitation in GH4742 superalloy under a wide range of cooling rates was investigated using zonal melting liquid metal cooling(ZMLMC) experiments.Comparing various nickel-based superalloys,the primary dendrite spacing is significantly linearly correlated with G^(-1/2)V^(-1/4) at high cooling rates,where G and V are temperature gradient and drawing rate,respectively.As the cooling rate decreases,the primary dendrite spacing increases in a dispersive manner.The secondary dendrite arm spacing is significantly correlated with(GV)^(-0.4) for all cooling rate ranges.The degree of elemental segregation increases and then decreases as the cooling rate increases,which is due to the competition between solute counter-diffusion and dendrite tip subcooling.With increasing the solidification rate,the size of γ′,carbides,and non-metallic inclusions gradually decreases.The morphology of the γ′ precipitate changes from plume-like to cubic to spherical.The morphology of carbide changes from block to fine-strip then to Chinese-script.The morphology of carbide is controlled by both dendrite interstitial shape and element diffusion.The inclusions are mainly composite inclusions,which usually show the growth of Ti(C,N) with oxide as the heterogeneous nucleation center and carbide on the outer surface of the carbonitride.As the cooling rate increases,the number density of composite inclusions first increases and then decreases,which is closely related to the elemental segregation behavior. 展开更多
关键词 superalloyS MICROSTRUCTURE SEGREGATION precipitation inclusions
下载PDF
Effect of the capsule on deformation and densification behavior of nickel-based superalloy compact during hot isostatic pressing 被引量:3
14
作者 Lebiao Yang Xiaona Ren +4 位作者 Chao Cai Pengju Xue MIrfan Hussain Yusheng Shi Changchun Ge 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期122-130,共9页
The Shima yield criterion used in finite element analysis for nickel-based superalloy powder compact during hot isostatic pressing(HIP) was modified through uniaxial compression experiments. The influence of cylindric... The Shima yield criterion used in finite element analysis for nickel-based superalloy powder compact during hot isostatic pressing(HIP) was modified through uniaxial compression experiments. The influence of cylindrical capsule characteristics on FGH4096M superalloy powder compact deformation and densification behavior during HIP was investigated through simulations and experiments. Results revealed the simulation shrinkage prediction fitted well with the experimental shrinkage including a maximum shrinkage error of 1.5%. It was shown that the axial shrinkage was 1.7% higher than radial shrinkage for a cylindrical capsule with the size of ∮50 mm × 100 mm due to the force arm difference along the axial and radial direction of the capsule. The stress deviated from the isostatic state in the capsule led to the uneven shrinkage and non-uniform densification of the powder compact. The ratio of the maximum radial displacement to axial displacement increased from0.47 to 0.75 with the capsule thickness increasing from 2 to 4 mm. The pressure transmission is related to the capsule thickness, the capsule material performance, and physical parameters in the HIP process. 展开更多
关键词 hot isostatic pressing nickel-based superalloy compact CAPSULE DENSIFICATION DEFORMATION
下载PDF
Additive manufacturing of Ni-based superalloys: Residual stress, mechanisms of crack formation and strategies for crack inhibition 被引量:9
15
作者 Chuan Guo Gan Li +8 位作者 Sheng Li Xiaogang Hu Hongxing Lu Xinggang Li Zhen Xu Yuhan Chen Qingqing Li Jian Lu Qiang Zhu 《Nano Materials Science》 EI CAS CSCD 2023年第1期53-77,共25页
The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in hig... The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in high-end industrial systems.However,the intense temperature gradient induced by the rapid heating and cooling processes of AM can generate high levels of residual stress and metastable chemical and structural states,inevitably leading to severe metallurgical defects in Ni-based superalloys.Cracks are the greatest threat to these materials’integrity as they can rapidly propagate and thereby cause sudden and non-predictable failure.Consequently,there is a need for a deeper understanding of residual stress and cracking mechanisms in additively manufactured Ni-based superalloys and ways to potentially prevent cracking,as this knowledge will enable the wider application of these unique materials.To this end,this paper comprehensively reviews the residual stress and the various mechanisms of crack formation in Ni-based superalloys during AM.In addition,several common methods for inhibiting crack formation are presented to assist the research community to develop methods for the fabrication of crack-free additively manufactured components. 展开更多
关键词 Additive manufacturing Ni-based superalloys Residual stress Mechanisms of crack formation Methods of crack inhibition
下载PDF
Electroless Plating of Ni Nanoparticles on WC to Assist Its Pressureless Sintering of WC-Ni Cemented Carbide with Enhanced Mechanical and Corrosion-resistant Performance
16
作者 MIN Fanlu YANG Hao +3 位作者 YAO Zhanhu LI Xinggao ZHANG Jianfeng LIU Hai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第6期786-795,共10页
Ni nanoparticles were coated uniformly on the surface of WC powder via a facile electroless plating method(abbreviated as WCN-EP),and then consolidated for mechanical and corrosion resistance performance characterizat... Ni nanoparticles were coated uniformly on the surface of WC powder via a facile electroless plating method(abbreviated as WCN-EP),and then consolidated for mechanical and corrosion resistance performance characterization,in comparison with hand mixed WC-Ni(WCN-H).Under the optimized electroless plating parameters,Ni particles,less than 1μm in average diameter,were found to be uniformly and densely wrapped on the surface of the tungsten carbide matrix of WCN-EP.In comparison,in WCN-H,the Ni particles about 1.8μm in average diameter,were randomly distributed together with irregular WC particles.The uniform coating of Ni was found to assist the densification process of WCN-EP effectively,with higher densities and less pores than those of WCN-H at the Ni content of 10.6wt%,25.5wt%,and 30.3 wt%.However,at the Ni content of 18.8wt%,the relative densities of WCN-EP and WCN-H both increased to the maximum value of 98%.The maximum hardness of the consolidated WCN-EP was 82.6 HRA,about 1.2 HRA higher than that of WCN-H.In addition,the consolidated WCN-EP also exhibits a superior corrosion resistance by the polarization curve analysis at an electrochemical workstation. 展开更多
关键词 electroless plating tungsten carbide(WC) WC-NI preparation process corrosion-resistant performance
下载PDF
Elastic-viscoplastic constitutive equations of K439B superalloy and thermal stress simulation during casting process 被引量:1
17
作者 Da-shan Sui Yu Shan +5 位作者 Dong-xin Wang Jun-yi Li Yao Xie Yi-qun Yang An-ping Dong Bao-de Sun 《China Foundry》 SCIE CAS CSCD 2023年第5期403-413,共11页
K439B nickel-based superalloy is a new type of high-temperature material.There is insufficient research on its constitutive equations and numerical modeling of thermal stress.Isothermal tensile experiments of K439B su... K439B nickel-based superalloy is a new type of high-temperature material.There is insufficient research on its constitutive equations and numerical modeling of thermal stress.Isothermal tensile experiments of K439B superalloy at different temperatures(20°C-1,000°C)and strain rates(1.33×10^(-3)s^(-1)-5.33×10^(-3)s^(-1))were performed by using a Gleeble-3800 simulator.The elastic moduli at different temperatures(20°C-650°C)were measured by resonance method.Subsequently,stress-strain curves were measured for K439B superalloy under different conditions.The elastic-viscoplastic constitutive equations were established and the correspongding parameters were solved by employing the Perzyna model.The verification results indicate that the calculated values of the constitutive equations are in good agreement with the experimental values.On this basis,the influence of process parameters on thermal stress was investigated by numerical simulation and orthogonal experimental design.The results of orthogonal experimental design reveal that the cooling mode of casting has a significant influence on the thermal stress,while pouring temperature and preheating temperature of shell mold have minimal impact.The distribution of physical fields under optimal process parameters,determined based on the orthogonal experimental design results,was simulated.The simulation results determine separately the specific positions with maximum values for effective stress,plastic strain,and displacement within the casting.The maximum stress is about 1,000.0 MPa,the plastic strain is about 0.135,and the displacement is about 1.47 mm.Moreover,the distribution states of thermal stress,strain,and displacement are closely related to the distribution of the temperature gradient and cooling rate in the casting.The research would provide a theoretical reference for exploring the stress-strain behavior and numerical modeling of the effective stress of the alloy during the casting process. 展开更多
关键词 nickel-based superalloy investment casting Perzyna model elastic-viscoplastic thermal stress numerical simulation
下载PDF
Edge defect analysis of high-strength corrosion-resistant steel
18
作者 DING Chen LIU Junliang +1 位作者 WANG Wei LIU Gang 《Baosteel Technical Research》 CAS 2015年第3期23-28,共6页
In this study, a 600 MPa hot-rolled corrosion-resistant steel plate produced by a specific company is investigated. Edge jagged defects and edge surface defects generated on both sides of the strip during production a... In this study, a 600 MPa hot-rolled corrosion-resistant steel plate produced by a specific company is investigated. Edge jagged defects and edge surface defects generated on both sides of the strip during production are characterized and analyzed. The results indicate that the distribution of reoxidation granules is located underneath the surface peel and that copper-containing granules diffuse along austenite grain boundaries. This phenomenon combined with the chemical composition and production parameters of a strip indicate that copper brittleness leads to edge jagged defects. However,the surface defects should be attributed to inherent defects on the surface of the strip. Measures that prevent surface oxidation and copper segregation at grain boundaries would likely eliminate these two types of edge defects. 展开更多
关键词 edge defect high-strength steel corrosion-resistant steel copper brittleness
下载PDF
Effect of Cooling Rates on Solidification Microstructures and Tensile Property of a Novel Wrought Superalloy
19
作者 李鑫旭 JIA Chonglin +1 位作者 YU Ang JIANG Zhouhua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期903-910,共8页
The effects of cooling rates on solidification behaviors,segregation characteristics and tensile property of GH4151 alloy were investigated using microstructure characterization and tensile test.Firstly,a relationship... The effects of cooling rates on solidification behaviors,segregation characteristics and tensile property of GH4151 alloy were investigated using microstructure characterization and tensile test.Firstly,a relationship between the secondary dendrite arm spacing and cooling rate was determined and it was confirmed to be valid.Secondly,it can be found from microstructure observations that the morphology of(Nb,Ti)C carbides transits from blocky and script type to fine script type and spotty type,and the refinedγ'phase was observed due to decrease of segregation with increasing cooling rates.Thirdly,the solidification microstructures of the industrial-scale samples were analyzed.The morphology ofηphase changes from indistinguishable shape,fine needle-like shape to large block-like shape with increasing ingot diameter.As a result,the mechanical properties of alloy decrease due to increase of brittle precipitations.The experimental results show that the precipitation behavior of GH4151 is affected by segregation degree of elements,and the segregation degree is determined by solute distribution process and solid back-diffusion process. 展开更多
关键词 GH4151 superalloy SOLIDIFICATION SEGREGATION cooling rate tensile properties
下载PDF
On establishment of novel constitutive model for directionally solidified nickel-based superalloys utilizing machine learning methods
20
作者 Jia-yan Sun Rong Yin +2 位作者 Ye-yuan Hu Yun-xiang Tan Qing-yan Xu 《China Foundry》 SCIE CAS CSCD 2023年第5期365-375,共11页
To enhance the accuracy of mechanical simulation in the directional solidification process of turbine blades for heavy-duty gas turbines,a new constitutive model that employs machine learning methods was developed.Thi... To enhance the accuracy of mechanical simulation in the directional solidification process of turbine blades for heavy-duty gas turbines,a new constitutive model that employs machine learning methods was developed.This model incorporates incremental learning and transfer learning,thus improves the predictive accuracy and generalization performance.To account for the anisotropy of the directionally solidified alloy,a deformation direction parameter is added to the model,enabling prediction of the stress-strain relationship of the alloy under different deformation directions.The predictive capabilities of both models are evaluated using correlation coefficient(R),average relative error(δ),and value of relative error(RE).Compared to the traditional model,the machine learning constitutive model achieves higher prediction accuracy and better generalization performance.This offers a new approach for the establishment of flow constitutive models for other directionally solidified and single-crystal superalloys. 展开更多
关键词 Ni-based superalloy constitutive model machine learning directional solidification ANISOTROPY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部