Spinal cord injury typically causes corticospinal tract disruption. Although the disrupted corticospinal tract can self-regenerate to a certain degree, the underlying mechanism of this process is still unclear. N6-met...Spinal cord injury typically causes corticospinal tract disruption. Although the disrupted corticospinal tract can self-regenerate to a certain degree, the underlying mechanism of this process is still unclear. N6-methyladenosine(m^(6)A) modifications are the most common form of epigenetic regulation at the RNA level and play an essential role in biological processes. However, whether m^(6)A modifications participate in corticospinal tract regeneration after spinal cord injury remains unknown. We found that expression of methyltransferase 14 protein(METTL14) in the locomotor cortex was high after spinal cord injury and accompanied by elevated m^(6)A levels. Knockdown of Mettl14 in the locomotor cortex was not favorable for corticospinal tract regeneration and neurological recovery after spinal cord injury. Through bioinformatics analysis and methylated RNA immunoprecipitation-quantitative polymerase chain reaction, we found that METTL14 regulated Trib2 expression in an m^(6)A-regulated manner, thereby activating the mitogen-activated protein kinase pathway and promoting corticospinal tract regeneration. Finally, we administered syringin, a stabilizer of METTL14, using molecular docking. Results confirmed that syringin can promote corticospinal tract regeneration and facilitate neurological recovery by stabilizing METTL14. Findings from this study reveal that m^(6)A modification is involved in the regulation of corticospinal tract regeneration after spinal cord injury.展开更多
Tibetan singing bowls emit low-frequency sounds and produce perceptible harmonic tones and vibrations through manual tapping.The sounds the singing bowls produce have been shown to enhance relaxation and reduce anxiet...Tibetan singing bowls emit low-frequency sounds and produce perceptible harmonic tones and vibrations through manual tapping.The sounds the singing bowls produce have been shown to enhance relaxation and reduce anxiety.However,the underlying mechanism remains unclear.In this study,we used chronic restraint stress or sleep deprivation to establish mouse models of anxiety that exhibit anxiety-like behaviors.We then supplied treatment with singing bowls in a bottomless cage placed on the top of a cushion.We found that unlike in humans,the combination of harmonic tones and vibrations did not improve anxietylike behaviors in mice,while individual vibration components did.Additionally,the vibration of singing bowls increased the level of N-methyl-D-aspartate receptor 1 in the somatosensory cortex and prefrontal cortex of the mice,decreased the level ofγ-aminobutyric acid A(GABA)receptorα1 subtype,reduced the level of CaMKII in the prefrontal cortex,and increased the number of GABAergic interneurons.At the same time,electrophysiological tests showed that the vibration of singing bowls significantly reduced the abnormal low-frequency gamma oscillation peak frequency in the medial prefrontal cortex caused by stress restraint pressure and sleep deprivation.Results from this study indicate that the vibration of singing bowls can alleviate anxiety-like behaviors by reducing abnormal molecular and electrophysiological events in somatosensory and medial prefrontal cortex.展开更多
Parkinson’s disease can affect not only motor functions but also cognitive abilities,leading to cognitive impairment.One common issue in Parkinson’s disease with cognitive dysfunction is the difficulty in executive ...Parkinson’s disease can affect not only motor functions but also cognitive abilities,leading to cognitive impairment.One common issue in Parkinson’s disease with cognitive dysfunction is the difficulty in executive functioning.Executive functions help us plan,organize,and control our actions based on our goals.The brain area responsible for executive functions is called the prefrontal co rtex.It acts as the command center for the brain,especially when it comes to regulating executive functions.The role of the prefrontal cortex in cognitive processes is influenced by a chemical messenger called dopamine.However,little is known about how dopamine affects the cognitive functions of patients with Parkinson’s disease.In this article,the authors review the latest research on this topic.They start by looking at how the dopaminergic syste m,is alte red in Parkinson’s disease with executive dysfunction.Then,they explore how these changes in dopamine impact the synaptic structure,electrical activity,and connection components of the prefrontal cortex.The authors also summarize the relationship between Parkinson’s disease and dopamine-related cognitive issues.This information may offer valuable insights and directions for further research and improvement in the clinical treatment of cognitive impairment in Parkinson’s disease.展开更多
Glaucoma is a leading cause of irreve rsible blindness wo rldwide,and previous studies have shown that,in addition to affecting the eyes,it also causes abnormalities in the brain.However,it is not yet clear how the pr...Glaucoma is a leading cause of irreve rsible blindness wo rldwide,and previous studies have shown that,in addition to affecting the eyes,it also causes abnormalities in the brain.However,it is not yet clear how the primary visual cortex(V1)is altered in glaucoma.This study used DBA/2J mice as a model for spontaneous secondary glaucoma.The aim of the study was to compare the electrophysiological and histomorphological chara cteristics of neurons in the V1between 9-month-old DBA/2J mice and age-matched C57BL/6J mice.We conducted single-unit recordings in the V1 of light-anesthetized mice to measure the visually induced responses,including single-unit spiking and gamma band oscillations.The morphology of layerⅡ/Ⅲneurons was determined by neuronal nuclear antigen staining and Nissl staining of brain tissue sections.Eighty-seven neurons from eight DBA/2J mice and eighty-one neurons from eight C57BL/6J mice were examined.Compared with the C57BL/6J group,V1 neurons in the DBA/2J group exhibited weaker visual tuning and impaired spatial summation.Moreove r,fewer neuro ns were observed in the V1 of DBA/2J mice compared with C57BL/6J mice.These findings suggest that DBA/2J mice have fewer neurons in the VI compared with C57BL/6J mice,and that these neurons have impaired visual tuning.Our findings provide a better understanding of the pathological changes that occur in V1 neuron function and morphology in the DBA/2J mouse model.This study might offer some innovative perspectives regarding the treatment of glaucoma.展开更多
Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory,resistant to antiepileptic drugs,and has a high recurrence rate.The pathogenesis of temporal lobe epilepsy is complex and...Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory,resistant to antiepileptic drugs,and has a high recurrence rate.The pathogenesis of temporal lobe epilepsy is complex and is not fully understood.Intracellular calcium dynamics have been implicated in temporal lobe epilepsy.However,the effect of fluctuating calcium activity in CA1 pyramidal neurons on temporal lobe epilepsy is unknown,and no longitudinal studies have investigated calcium activity in pyramidal neurons in the hippocampal CA1 and primary motor cortex M1 of freely moving mice.In this study,we used a multichannel fiber photometry system to continuously record calcium signals in CA1 and M1 during the temporal lobe epilepsy process.We found that calcium signals varied according to the grade of temporal lobe epilepsy episodes.In particular,cortical spreading depression,which has recently been frequently used to represent the continuously and substantially increased calcium signals,was found to correspond to complex and severe behavioral characteristics of temporal lobe epilepsy ranging from gradeⅡto gradeⅤ.However,vigorous calcium oscillations and highly synchronized calcium signals in CA1 and M1 were strongly related to convulsive motor seizures.Chemogenetic inhibition of pyramidal neurons in CA1 significantly attenuated the amplitudes of the calcium signals corresponding to gradeⅠepisodes.In addition,the latency of cortical spreading depression was prolonged,and the above-mentioned abnormal calcium signals in CA1 and M1 were also significantly reduced.Intriguingly,it was possible to rescue the altered intracellular calcium dynamics.Via simultaneous analysis of calcium signals and epileptic behaviors,we found that the progression of temporal lobe epilepsy was alleviated when specific calcium signals were reduced,and that the end-point behaviors of temporal lobe epilepsy were improved.Our results indicate that the calcium dynamic between CA1 and M1 may reflect specific epileptic behaviors corresponding to different grades.Furthermore,the selective regulation of abnormal calcium signals in CA1 pyramidal neurons appears to effectively alleviate temporal lobe epilepsy,thereby providing a potential molecular mechanism for a new temporal lobe epilepsy diagnosis and treatment strategy.展开更多
In the present study expression of estrogen receptor subtype -alpha (ERalpha) and -beta (ERbeta) in the cerebral cortex, cerebellum, and olfactory bulb was investigated and compared between neonatal (1 to approximatel...In the present study expression of estrogen receptor subtype -alpha (ERalpha) and -beta (ERbeta) in the cerebral cortex, cerebellum, and olfactory bulb was investigated and compared between neonatal (1 to approximately 3-days-old) and adult (250 to approximately 350 g) rats, using reverse transcription-polymerase chain reaction (RT-PCR). No ERalpha transcripts were detectable in the adult cerebellum and olfactory bulb, whereas very weak expression of ERalpha was present in the adult cerebral cortex. No significant difference in ERbeta transcripts was detectable between the neonatal and adult rats. While transcripts for both ER subtypes were co-expressed in these brain areas of neonatal rats, although ERalpha expression was significantly weaker than ERbeta. Even in the cerebral cortex known to contain both ER subtypes in adult rats, ERalpha transcripts in neonatal rats were much higher than in adult. These observations provide evidence for the existence of different expression patterns of ERalpha/ERbeta transcripts in these three brain areas between the neonatal and adult rats, suggesting that each ER subtype may play a distinct role in the regulation of differentiation, development, and functions of the brain by estrogen.展开更多
The dysfunction of the medial prefrontal cortex is associated with affective disorders and non-motor features in Parkinson’s disease.However,the exact role of the mediodorsal thalamic nucleus in the function of the p...The dysfunction of the medial prefrontal cortex is associated with affective disorders and non-motor features in Parkinson’s disease.However,the exact role of the mediodorsal thalamic nucleus in the function of the prefrontal cortex remains unclear.To study the possible effects of the mediodorsal thalamic nucleus on the neurological function of the medial prefrontal cortex,a model of Parkinson’s disease was established by injecting 8μg 6-hydroxydopamine into the substantia nigra compacta of rats.After 1 or 3 weeks,0.3μg ibotenic acid was injected into the mediodorsal thalamic nucleus of the midbrain.At 3 or 5 weeks after the initial injury,neuronal discharge in medial prefrontal cortex of rat brain was determined electrophysiologically.The numbers of dopamine-positive neurons and tyrosine hydroxylase immunoreactivity in substantia nigra compacta and ventral tegmental area were detected by immunohistochemical staining.Results demonstrated that after injury,the immunoreactivity of dopamine neurons and tyrosine hydroxylase decreased in the substantia nigra compacta and ventral tegmental areas of rats.Compared with normal medial prefrontal cortical neurons,at 3 and 5 weeks after substantia nigra compacta injury,the discharge frequency of pyramidal neurons increased and the discharge pattern of these neurons tended to be a burst-discharge,with an increased discharge interval.The discharge frequency of interneurons decreased and the discharge pattern also tended to be a burst-discharge,but the discharge interval was only higher at 3 weeks.At 3 weeks after the combined lesions,the discharge frequency,discharge pattern and discharge interval were restored to a normal level in pyramidal neurons and interneurons in medial prefrontal cortex.These findings have confirmed that mediodorsal thalamic nucleus is involved in regulating neuronal activities of the medial prefrontal cortex.The changes in the function of the mediodorsal thalamic nucleus may be associated with the abnormal discharge activity of the medial prefrontal cortex neurons after substantia nigra compacta injury.All experimental procedures were approved by the Institutional Animal Care and Use Committee of Xi’an Jiaotong University,China(approval No.XJTULAC2017-067)on August 26,2017.展开更多
The multiple-layer structure of the cerebral cortex is important for its functions. Such a structure is generated based on the proliferation and differentiation of neural stem/progenitor cells. Notch functions as a mo...The multiple-layer structure of the cerebral cortex is important for its functions. Such a structure is generated based on the proliferation and differentiation of neural stem/progenitor cells. Notch functions as a molecular switch for neural stem/progenitor cell fate during cortex development but the mechanism remains unclear. Biochemical and cellular studies showed that Notch receptor activation induces several proteases to release the Notch intracellular domain (NICD). A Disintegrin and Metalloprotease 10 (ADAM10) might be a physiological rate-limiting $2 enzyme for Notch activation. Nestin-driven conditional ADAM10 knockout in mouse cortex showed that ADAM10 is cdtical for maintenance of the neural stem cell population during early embryonic cortex development. However, the expression pattern and function of ADAM10 during later cerebral cortex development remains poorly understood. We performed in situ hybridization for ADAMIO mRNA and immunofluorescent analysis to determine the expression of ADAM10 and NICD in mouse cortex from embryonic day 9 (E14.5) to postnatal day 1 (P1). ADAM10 and NICD were highly co-localized in the cortex of E16.5 to P1 mice. Comparisons of expression patterns of ADAM10 with Nestin (neural stem cell marker), Tujl (mature neuron marker), and S100β (gila marker) showed that ADAM10 expression highly matched that of S10013 and partially matched that of Tujl at later embryonic to early postnatal cortex developmental stages. Such expression patterns indicated that ADAM10-Notch signaling might have a critical function in neuronal maturation and gliogenesis during cortex development.展开更多
针对采用控制器局域网络(CAN:Controller Area Network)总线的自动操舵系统和采用串口通讯的航海导航设备之间通讯的不匹配问题,设计了一种基于Cortex-M3嵌入式平台的通信转换模块,实现了串口与CAN总线数据的双向转换功能。同时对传统CA...针对采用控制器局域网络(CAN:Controller Area Network)总线的自动操舵系统和采用串口通讯的航海导航设备之间通讯的不匹配问题,设计了一种基于Cortex-M3嵌入式平台的通信转换模块,实现了串口与CAN总线数据的双向转换功能。同时对传统CAN收发器CTM1050存在的信号稳定性不足、波特率精准度低等问题,提出并实现了一种硬件电路的替代方案,提高了数据通讯的时效性和稳定性。基于CAN2.0B扩展帧,设计了自动操舵系统内部CAN总线协议。该协议可根据报文信息优先级分配标识帧,保证了总线数据的有序传输。实验结果表明,该通讯模块功能使用正常且通讯效果良好,具有一定通用性,可在多种需要转换的设备系统上推广使用。展开更多
This study aimed to investigate the association between atrophy in the prefrontal cortex with executive function and verbal fluency in elderly male and female patients poststroke. Thirty elderly female patients with n...This study aimed to investigate the association between atrophy in the prefrontal cortex with executive function and verbal fluency in elderly male and female patients poststroke. Thirty elderly female patients with non-aphasic ischemic stroke aged -〉 60 years and 30 age-matched non-aphasic male patients with ischemic stroke were recruited. Automatic magnetic resonance imaging segmentation was used to assess the volume of the whole prefrontal cortex, along with its subdivisions: anterior cingulate cortex, orbitofrontal cortex and dorsolateral prefrontal cortex. The Semantic Verbal Fluency Test was administered at 3 and 15 months poststroke. At 3 months poststroke, left dorsolateral prefrontal cortex volume was significantly correlated with Verbal Fluency Test score in female patients only (partial coefficient = 0.453, P = 0.045), after controlling for age, education, diabetes, neurological deficit, white matter lesions volume, as well as the location and volume of infarcts. At 15 months poststroke, there remained a significant association between the left dorsolateral prefrontal cortex volume and Verbal Fluency Test (partial coefficient = 0.661, P = 0.001) and between the left prefrontal cortex volume and Verbal Fluency Test (partial coefficient = 0.573, P = 0.004) in female patients after the same adjustments. These findings indicate that atrophy of the left dorsolateral prefrontal cortex contributes to the impairment of verbal fluency in elderly female patients with stroke. Sex differences may be present in the neuropsychological mechanisms of verbal fluency impairment in patients with stroke.展开更多
BACKGROUND The major reason for filtering bleb failure or scarring of the bleb site is due to excessive scarring after glaucoma filtration surgery in the clinic.Traditional Chinese medicine has preeminence in the prev...BACKGROUND The major reason for filtering bleb failure or scarring of the bleb site is due to excessive scarring after glaucoma filtration surgery in the clinic.Traditional Chinese medicine has preeminence in the prevention of fibrosis formation through the regulation of systemic circulation and improvement of the properties of the inflammatory cells in the blood.AIM To examine the clinical efficacy of using the Modified Cortex Mori Capsules(MCMC;Chinese name:Jiawei Sangbaipi Capsules)in the success rate of functional filtering blebs after glaucoma filtering surgery in clinical patients.METHODS Sixty resurgery glaucoma patients were randomly divided into two groups:30 patients in surgery with the placebo group and 30 patients in surgery with the MCMC group.Patients took either the placebo or the MCMC 2 wk before and after surgery.Postoperative morphology and function filtering bleb,visual acuity,intraocular pressure,postoperative complications,the success rate of filtration surgery and clinical efficacy were observed.RESULTS Fifty patients completed the study.The percentage of functional filtering blebs in the surgery plus MCMC group was 84%at 6 mo after surgery,which was higher than surgery plus placebo group(64%,P<0.05).The surgical success rate in the MCMC and placebo groups were 79%±8.3%and 57%±10.6%respectively(P<0.05).The visual acuity,intraocular pressure and the postoperative complications in the two groups had no significant differences.CONCLUSION Glaucoma filtering surgery while taking MCMC not only reduced excessive scar formation and increased the success rate of functional filtering blebs but also improved the success of glaucoma filtration operations.展开更多
Humans are limited in their ability to perform multiple cognitive-motor tasks in parallel. In eight participants, we examined whether transcranial direct current stimulation (tDCS) to dorsal premotor cortex (PMD) coul...Humans are limited in their ability to perform multiple cognitive-motor tasks in parallel. In eight participants, we examined whether transcranial direct current stimulation (tDCS) to dorsal premotor cortex (PMD) could attenuate a delay of reaction time (RT) while the participants responded to two visual stimuli presented in temporally close succession. We provided anodal, cathodal, or sham tDCS while the participants performed a task requiring two choice responses or a control task requiring two fixed responses. When the interval between the two stimuli was shorter, the RTs were delayed in both tasks, but anodal tDCS shortened them only in the former task, probably by promoting the response selection function of PMD. Non-invasive neuro-modulation to the brain can boost human ability to multi-task.展开更多
Background: The primary motor cortex (M1) stimulation (MCS) is a useful tool for attenuation of the peripheral neuropathic pain in patients with pharmacologically refractory pain. Furthermore, that neurological proced...Background: The primary motor cortex (M1) stimulation (MCS) is a useful tool for attenuation of the peripheral neuropathic pain in patients with pharmacologically refractory pain. Furthermore, that neurological procedure may also cause antinociception in rodents with neuropathic pain. Cold allodynia is a frequent clinical finding in patients with neuropathic pain, then, we evaluated if an adapted model of neuropathy induced by chronic constriction injury (CCI) of the ischiadicus nervus (sciatic nerve) produces cold allodynia in an animal model of chronic pain. In addition, we also investigated the effect of the electrical stimulation of the M1 on chronic neuropathic pain condition in laboratory animals. Methods: Male Wistar rats were used. An adapted model of peripheral mononeuropathy induced by CCI was carried out by placing a single loose ligature around the right sciatic nerve. The acetone test was used to evaluate the cold allodynia in CCI or Sham (without ligature) rats. The MCS (M1) was performed at low-frequency (20 μA, 100 Hz) during 15 s by deep brain stimulation (DBS-Thomas Recording device) 21 days after CCI or Sham procedures. The cold allodynia was measured before and immediately after the neurostimulation of M1 in the following time-window: 0, 15 and 30 min after MCS. Results: Cold allodynia threshold increased in animals with chronic neuropathic pain submitted to the acetone test 21 days after the CCI surgery. The M1-stimulation by DBS procedure decreased the cold allodynia immediately and until 30 min after M1-stimulation in rats with chronic neuropathic pain. Conclusion: The current proposal for a CCI model by a single loose ligature of the sciatic nerve can be employed as an experimental model of chronic neuropathic pain in rats submitted to peripheral nervous system injury. The M1-stimulation produced antinociception in rats with chronic neuropathic pain. Thus, we reinforced that the MCS decreases cold allodynia in laboratory animals submitted to persistent sciatic nerve constriction and can be a more reasonable procedure for the treatment of chronic intractable neuropathic pain.展开更多
The adult cortex has long been regarded as non-neurogenic.Whether injury can induce neurogenesis in the adult cortex is still controversial.Here,we report that focal ischemia stimulates a transient wave of local neuro...The adult cortex has long been regarded as non-neurogenic.Whether injury can induce neurogenesis in the adult cortex is still controversial.Here,we report that focal ischemia stimulates a transient wave of local neurogenesis.Using 5′-bromo-2′-deoxyuridine labeling,we demonstrated a rapid generation of doublecortin-positive neuroblasts that died quickly in mouse cerebral cortex following ischemia.Nestin-Cre^(ER)-based cell ablation and fate mapping showed a small contribution of neuroblasts by subventricular zone neural stem cells.Using a mini-photothrombotic ischemia mouse model and retrovirus expressing green fluorescent protein labeling,we observed maturation of locally generated new neurons.Furthermore,fate tracing analyses using PDGFRα-,GFAP-,and Sox2-Cre^(ER) mice showed a transient wave of neuroblast generation in mild ischemic cortex and identified that Sox2-positive astrocytes were the major neurogenic cells in adult cortex.In addition,a similar upregulation of Sox2 and appearance of neuroblasts were observed in the focal ischemic cortex of Macaca mulatta.Our findings demonstrated a transient neurogenic response of Sox2-positive astrocytes in ischemic cortex,which suggests the possibility of inducing neuronal regeneration by amplifying this intrinsic response in the future.展开更多
Stroke is a physiological alteration associated with changes in blood flow that can result in sudden-onset cognitive impairment. It has a heterogenous clinical presentation with varying degrees of severity correlated ...Stroke is a physiological alteration associated with changes in blood flow that can result in sudden-onset cognitive impairment. It has a heterogenous clinical presentation with varying degrees of severity correlated with specific central nervous system zones or areas, and its prognosis is uncertain. This case study describes a 62-year-old male patient with acquired brain damage of the anterior cingulate cortex as a result of an ischemic event in the territory of the left anterior cerebral artery. Cognitive function was assessed using the neuropsychological executive function and frontal lobe test battery (BANFE-2) as well as other neuropsychological tests. The results show a profile of higher mental functions characterized by the presence of dysexecutive syndrome with marked behavioral alteration and diencephalic amnesia. .展开更多
The dorsal area of the anterior cingulate cortex (ACC) constructs the salience network associated with the anterior insular cortex. Conventional brain imaging studies, such as functional magnetic resonance imaging (fM...The dorsal area of the anterior cingulate cortex (ACC) constructs the salience network associated with the anterior insular cortex. Conventional brain imaging studies, such as functional magnetic resonance imaging (fMRI), have demonstrated that relational memory formation occurs in the ACC. However, how such memory is encoded and retrieved remains unknown due to limited time resolution of conventional fMRI. This study aimed to investigate temporal dynamics of the dorsal ACC (dACC) during word-pair tasks based on a newly developed event-related deep brain activity (ER-DBA) method using occipital electroencephalogram (EEG) signal powers. The method assesses dACC activity at a temporal resolution of approximately 0.3 s beyond the conventional resolution limit. We found that transient deactivation of dACC during the presentation of the second word of each pair was essential for encoding success regardless of whether the words were related or unrelated. We also found that memory accuracy was not affected by the intervention of inter-trials until the recall trial. Taken together, these findings suggest that dACC deactivation for encoding success is accompanied with short-term potentiation essential for durability of memory. We further found that false memory formation associated with the presentation of word pairs was occasionally committed. In such cases, dACC exhibited a similar transient deactivation although false memory commission was independent of related or unrelated conditions. Our findings suggest that encoding and retrieval of associates are paralleled and that simultaneous production of associates seems to be an essential strategy for successful relational memory formation. The study was limited to the assessment of dACC activity and did not account for other regional brain activities or receptor regulation related to short-term potentiation. We detected fast behavior of dACC during relational memory formation using the novel ER-DBA method. Such temporal dynamics will be important for eliciting underlying mechanisms of memory dysfunctions.展开更多
[Objectives]This study was conducted to establish the method for simultaneous determination of six active components.[Methods]Simultaneous determination of chlorogenic acid,phellodendrine,magnoflorine,jatrorrhizine,pa...[Objectives]This study was conducted to establish the method for simultaneous determination of six active components.[Methods]Simultaneous determination of chlorogenic acid,phellodendrine,magnoflorine,jatrorrhizine,palmatine and berberine in Cortex Phellodendri was carried out by HPLC with a Diamonsil C18(4.6 mm×250 mm,5μm)column was used.The mobile phase was acetonitrile-water(1‰acetic acid,2 mmol ammonium acetate)solution in gradient elution.The detection wavelength was set at 280 nm,and the column temperature was kept at 25℃and the flow rate was 1 ml/min.[Results]The linear ranges of chlorogenic acid,phellodendrine,magnoflorine,jatrorrhizine,palmatine and berberine were 20.00-320.00,18.75-130.00,25.00-200.00,5.00-100.00,20.00-200.00,and 0.09-1.80 mg/L,respectively.The average recovery was 98.1%,99.4%,97.5%,97.3%,104.0%,and 98.5%,respectively;and the RSDs were 0.5%,0.6%,0.8%,1.0%,1.4%,and 0.9%,respectively.[Conclusions]The method is convenient,stable,reliable and suitable for quality control of Cortex Phellodendri.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82030071 (to JH),82272495 (to YC)Science and Technology Major Project of Changsha,No.kh2103008 (to JH)Graduate Students’ Independent Innovative Projects of Hunan Province,No.CX20230311 (to YJ)。
文摘Spinal cord injury typically causes corticospinal tract disruption. Although the disrupted corticospinal tract can self-regenerate to a certain degree, the underlying mechanism of this process is still unclear. N6-methyladenosine(m^(6)A) modifications are the most common form of epigenetic regulation at the RNA level and play an essential role in biological processes. However, whether m^(6)A modifications participate in corticospinal tract regeneration after spinal cord injury remains unknown. We found that expression of methyltransferase 14 protein(METTL14) in the locomotor cortex was high after spinal cord injury and accompanied by elevated m^(6)A levels. Knockdown of Mettl14 in the locomotor cortex was not favorable for corticospinal tract regeneration and neurological recovery after spinal cord injury. Through bioinformatics analysis and methylated RNA immunoprecipitation-quantitative polymerase chain reaction, we found that METTL14 regulated Trib2 expression in an m^(6)A-regulated manner, thereby activating the mitogen-activated protein kinase pathway and promoting corticospinal tract regeneration. Finally, we administered syringin, a stabilizer of METTL14, using molecular docking. Results confirmed that syringin can promote corticospinal tract regeneration and facilitate neurological recovery by stabilizing METTL14. Findings from this study reveal that m^(6)A modification is involved in the regulation of corticospinal tract regeneration after spinal cord injury.
基金supported by the National Natural Science Foundation of ChinaNos.32170950(to LY),31970915(to LY),31871170(to CL)+4 种基金the Natural Science Foundation of Guangdong Province for Major Cultivation ProjectNo.2018B030336001(to LY)the Natural Science Foundation of Guangdong Province,Nos.2021A1515010804(to CL),2023A1515010899(to CL)the Guangdong Grant‘Key Technologies for Treatment of Brain Disorders’No.2018B030332001(to CL)。
文摘Tibetan singing bowls emit low-frequency sounds and produce perceptible harmonic tones and vibrations through manual tapping.The sounds the singing bowls produce have been shown to enhance relaxation and reduce anxiety.However,the underlying mechanism remains unclear.In this study,we used chronic restraint stress or sleep deprivation to establish mouse models of anxiety that exhibit anxiety-like behaviors.We then supplied treatment with singing bowls in a bottomless cage placed on the top of a cushion.We found that unlike in humans,the combination of harmonic tones and vibrations did not improve anxietylike behaviors in mice,while individual vibration components did.Additionally,the vibration of singing bowls increased the level of N-methyl-D-aspartate receptor 1 in the somatosensory cortex and prefrontal cortex of the mice,decreased the level ofγ-aminobutyric acid A(GABA)receptorα1 subtype,reduced the level of CaMKII in the prefrontal cortex,and increased the number of GABAergic interneurons.At the same time,electrophysiological tests showed that the vibration of singing bowls significantly reduced the abnormal low-frequency gamma oscillation peak frequency in the medial prefrontal cortex caused by stress restraint pressure and sleep deprivation.Results from this study indicate that the vibration of singing bowls can alleviate anxiety-like behaviors by reducing abnormal molecular and electrophysiological events in somatosensory and medial prefrontal cortex.
基金supported by the National Natural Science Foundation of China,No.82101263Jiangsu Province Science Foundation for Youths,No.BK20210903Research Foundation for Talented Scholars of Xuzhou Medical University,No.RC20552114(all to CT)。
文摘Parkinson’s disease can affect not only motor functions but also cognitive abilities,leading to cognitive impairment.One common issue in Parkinson’s disease with cognitive dysfunction is the difficulty in executive functioning.Executive functions help us plan,organize,and control our actions based on our goals.The brain area responsible for executive functions is called the prefrontal co rtex.It acts as the command center for the brain,especially when it comes to regulating executive functions.The role of the prefrontal cortex in cognitive processes is influenced by a chemical messenger called dopamine.However,little is known about how dopamine affects the cognitive functions of patients with Parkinson’s disease.In this article,the authors review the latest research on this topic.They start by looking at how the dopaminergic syste m,is alte red in Parkinson’s disease with executive dysfunction.Then,they explore how these changes in dopamine impact the synaptic structure,electrical activity,and connection components of the prefrontal cortex.The authors also summarize the relationship between Parkinson’s disease and dopamine-related cognitive issues.This information may offer valuable insights and directions for further research and improvement in the clinical treatment of cognitive impairment in Parkinson’s disease.
基金supported by the STI 2030-Major Projects 2022ZD0208500(to DY)the National Natural Science Foundation of China,Nos.82072011(to YX),82121003(to DY),82271120(to YS)+2 种基金Sichuan Science and Technology Program,No.2022ZYD0066(to YS)a grant from Chinese Academy of Medical Science,No.2019-12M-5-032(to YS)the Fundamental Research Funds for the Central Universities,No.ZYGX2021YGLH219(to KC)。
文摘Glaucoma is a leading cause of irreve rsible blindness wo rldwide,and previous studies have shown that,in addition to affecting the eyes,it also causes abnormalities in the brain.However,it is not yet clear how the primary visual cortex(V1)is altered in glaucoma.This study used DBA/2J mice as a model for spontaneous secondary glaucoma.The aim of the study was to compare the electrophysiological and histomorphological chara cteristics of neurons in the V1between 9-month-old DBA/2J mice and age-matched C57BL/6J mice.We conducted single-unit recordings in the V1 of light-anesthetized mice to measure the visually induced responses,including single-unit spiking and gamma band oscillations.The morphology of layerⅡ/Ⅲneurons was determined by neuronal nuclear antigen staining and Nissl staining of brain tissue sections.Eighty-seven neurons from eight DBA/2J mice and eighty-one neurons from eight C57BL/6J mice were examined.Compared with the C57BL/6J group,V1 neurons in the DBA/2J group exhibited weaker visual tuning and impaired spatial summation.Moreove r,fewer neuro ns were observed in the V1 of DBA/2J mice compared with C57BL/6J mice.These findings suggest that DBA/2J mice have fewer neurons in the VI compared with C57BL/6J mice,and that these neurons have impaired visual tuning.Our findings provide a better understanding of the pathological changes that occur in V1 neuron function and morphology in the DBA/2J mouse model.This study might offer some innovative perspectives regarding the treatment of glaucoma.
基金supported by the National Natural Science Foundation of China,Nos.62027812(to HS),81771470(to HS),and 82101608(to YL)Tianjin Postgraduate Research and Innovation Project,No.2020YJSS122(to XD)。
文摘Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory,resistant to antiepileptic drugs,and has a high recurrence rate.The pathogenesis of temporal lobe epilepsy is complex and is not fully understood.Intracellular calcium dynamics have been implicated in temporal lobe epilepsy.However,the effect of fluctuating calcium activity in CA1 pyramidal neurons on temporal lobe epilepsy is unknown,and no longitudinal studies have investigated calcium activity in pyramidal neurons in the hippocampal CA1 and primary motor cortex M1 of freely moving mice.In this study,we used a multichannel fiber photometry system to continuously record calcium signals in CA1 and M1 during the temporal lobe epilepsy process.We found that calcium signals varied according to the grade of temporal lobe epilepsy episodes.In particular,cortical spreading depression,which has recently been frequently used to represent the continuously and substantially increased calcium signals,was found to correspond to complex and severe behavioral characteristics of temporal lobe epilepsy ranging from gradeⅡto gradeⅤ.However,vigorous calcium oscillations and highly synchronized calcium signals in CA1 and M1 were strongly related to convulsive motor seizures.Chemogenetic inhibition of pyramidal neurons in CA1 significantly attenuated the amplitudes of the calcium signals corresponding to gradeⅠepisodes.In addition,the latency of cortical spreading depression was prolonged,and the above-mentioned abnormal calcium signals in CA1 and M1 were also significantly reduced.Intriguingly,it was possible to rescue the altered intracellular calcium dynamics.Via simultaneous analysis of calcium signals and epileptic behaviors,we found that the progression of temporal lobe epilepsy was alleviated when specific calcium signals were reduced,and that the end-point behaviors of temporal lobe epilepsy were improved.Our results indicate that the calcium dynamic between CA1 and M1 may reflect specific epileptic behaviors corresponding to different grades.Furthermore,the selective regulation of abnormal calcium signals in CA1 pyramidal neurons appears to effectively alleviate temporal lobe epilepsy,thereby providing a potential molecular mechanism for a new temporal lobe epilepsy diagnosis and treatment strategy.
文摘In the present study expression of estrogen receptor subtype -alpha (ERalpha) and -beta (ERbeta) in the cerebral cortex, cerebellum, and olfactory bulb was investigated and compared between neonatal (1 to approximately 3-days-old) and adult (250 to approximately 350 g) rats, using reverse transcription-polymerase chain reaction (RT-PCR). No ERalpha transcripts were detectable in the adult cerebellum and olfactory bulb, whereas very weak expression of ERalpha was present in the adult cerebral cortex. No significant difference in ERbeta transcripts was detectable between the neonatal and adult rats. While transcripts for both ER subtypes were co-expressed in these brain areas of neonatal rats, although ERalpha expression was significantly weaker than ERbeta. Even in the cerebral cortex known to contain both ER subtypes in adult rats, ERalpha transcripts in neonatal rats were much higher than in adult. These observations provide evidence for the existence of different expression patterns of ERalpha/ERbeta transcripts in these three brain areas between the neonatal and adult rats, suggesting that each ER subtype may play a distinct role in the regulation of differentiation, development, and functions of the brain by estrogen.
基金supported by the Key Research Project of Science and Technology of Henan Province of China,No.14B180007(to LLF)the Development Project of Science and Technology of Luoyang Municipality of China,No.1401087A-5(to LLF)
文摘The dysfunction of the medial prefrontal cortex is associated with affective disorders and non-motor features in Parkinson’s disease.However,the exact role of the mediodorsal thalamic nucleus in the function of the prefrontal cortex remains unclear.To study the possible effects of the mediodorsal thalamic nucleus on the neurological function of the medial prefrontal cortex,a model of Parkinson’s disease was established by injecting 8μg 6-hydroxydopamine into the substantia nigra compacta of rats.After 1 or 3 weeks,0.3μg ibotenic acid was injected into the mediodorsal thalamic nucleus of the midbrain.At 3 or 5 weeks after the initial injury,neuronal discharge in medial prefrontal cortex of rat brain was determined electrophysiologically.The numbers of dopamine-positive neurons and tyrosine hydroxylase immunoreactivity in substantia nigra compacta and ventral tegmental area were detected by immunohistochemical staining.Results demonstrated that after injury,the immunoreactivity of dopamine neurons and tyrosine hydroxylase decreased in the substantia nigra compacta and ventral tegmental areas of rats.Compared with normal medial prefrontal cortical neurons,at 3 and 5 weeks after substantia nigra compacta injury,the discharge frequency of pyramidal neurons increased and the discharge pattern of these neurons tended to be a burst-discharge,with an increased discharge interval.The discharge frequency of interneurons decreased and the discharge pattern also tended to be a burst-discharge,but the discharge interval was only higher at 3 weeks.At 3 weeks after the combined lesions,the discharge frequency,discharge pattern and discharge interval were restored to a normal level in pyramidal neurons and interneurons in medial prefrontal cortex.These findings have confirmed that mediodorsal thalamic nucleus is involved in regulating neuronal activities of the medial prefrontal cortex.The changes in the function of the mediodorsal thalamic nucleus may be associated with the abnormal discharge activity of the medial prefrontal cortex neurons after substantia nigra compacta injury.All experimental procedures were approved by the Institutional Animal Care and Use Committee of Xi’an Jiaotong University,China(approval No.XJTULAC2017-067)on August 26,2017.
基金supported by the National Natural Science Foundation of China,No.30800322Shanghai Pujiang Program,No.08PJ1401300+4 种基金Shanghai Leading Academic Discipline Project,No.B111Ministry of Education Research Fund for New Teachers in Doctoral Program of Higher Educational Institutes,No.200802461050National Basic Research Program of China(973 Program),No.2011CB503703Ministry of Education Start Fund to Returned Overseas ScholarsZhuo Xue Program of Fudan University
文摘The multiple-layer structure of the cerebral cortex is important for its functions. Such a structure is generated based on the proliferation and differentiation of neural stem/progenitor cells. Notch functions as a molecular switch for neural stem/progenitor cell fate during cortex development but the mechanism remains unclear. Biochemical and cellular studies showed that Notch receptor activation induces several proteases to release the Notch intracellular domain (NICD). A Disintegrin and Metalloprotease 10 (ADAM10) might be a physiological rate-limiting $2 enzyme for Notch activation. Nestin-driven conditional ADAM10 knockout in mouse cortex showed that ADAM10 is cdtical for maintenance of the neural stem cell population during early embryonic cortex development. However, the expression pattern and function of ADAM10 during later cerebral cortex development remains poorly understood. We performed in situ hybridization for ADAMIO mRNA and immunofluorescent analysis to determine the expression of ADAM10 and NICD in mouse cortex from embryonic day 9 (E14.5) to postnatal day 1 (P1). ADAM10 and NICD were highly co-localized in the cortex of E16.5 to P1 mice. Comparisons of expression patterns of ADAM10 with Nestin (neural stem cell marker), Tujl (mature neuron marker), and S100β (gila marker) showed that ADAM10 expression highly matched that of S10013 and partially matched that of Tujl at later embryonic to early postnatal cortex developmental stages. Such expression patterns indicated that ADAM10-Notch signaling might have a critical function in neuronal maturation and gliogenesis during cortex development.
文摘针对采用控制器局域网络(CAN:Controller Area Network)总线的自动操舵系统和采用串口通讯的航海导航设备之间通讯的不匹配问题,设计了一种基于Cortex-M3嵌入式平台的通信转换模块,实现了串口与CAN总线数据的双向转换功能。同时对传统CAN收发器CTM1050存在的信号稳定性不足、波特率精准度低等问题,提出并实现了一种硬件电路的替代方案,提高了数据通讯的时效性和稳定性。基于CAN2.0B扩展帧,设计了自动操舵系统内部CAN总线协议。该协议可根据报文信息优先级分配标识帧,保证了总线数据的有序传输。实验结果表明,该通讯模块功能使用正常且通讯效果良好,具有一定通用性,可在多种需要转换的设备系统上推广使用。
基金supported by the Research Grants Council of the Hong Kong SAR,No. 452906
文摘This study aimed to investigate the association between atrophy in the prefrontal cortex with executive function and verbal fluency in elderly male and female patients poststroke. Thirty elderly female patients with non-aphasic ischemic stroke aged -〉 60 years and 30 age-matched non-aphasic male patients with ischemic stroke were recruited. Automatic magnetic resonance imaging segmentation was used to assess the volume of the whole prefrontal cortex, along with its subdivisions: anterior cingulate cortex, orbitofrontal cortex and dorsolateral prefrontal cortex. The Semantic Verbal Fluency Test was administered at 3 and 15 months poststroke. At 3 months poststroke, left dorsolateral prefrontal cortex volume was significantly correlated with Verbal Fluency Test score in female patients only (partial coefficient = 0.453, P = 0.045), after controlling for age, education, diabetes, neurological deficit, white matter lesions volume, as well as the location and volume of infarcts. At 15 months poststroke, there remained a significant association between the left dorsolateral prefrontal cortex volume and Verbal Fluency Test (partial coefficient = 0.661, P = 0.001) and between the left prefrontal cortex volume and Verbal Fluency Test (partial coefficient = 0.573, P = 0.004) in female patients after the same adjustments. These findings indicate that atrophy of the left dorsolateral prefrontal cortex contributes to the impairment of verbal fluency in elderly female patients with stroke. Sex differences may be present in the neuropsychological mechanisms of verbal fluency impairment in patients with stroke.
文摘BACKGROUND The major reason for filtering bleb failure or scarring of the bleb site is due to excessive scarring after glaucoma filtration surgery in the clinic.Traditional Chinese medicine has preeminence in the prevention of fibrosis formation through the regulation of systemic circulation and improvement of the properties of the inflammatory cells in the blood.AIM To examine the clinical efficacy of using the Modified Cortex Mori Capsules(MCMC;Chinese name:Jiawei Sangbaipi Capsules)in the success rate of functional filtering blebs after glaucoma filtering surgery in clinical patients.METHODS Sixty resurgery glaucoma patients were randomly divided into two groups:30 patients in surgery with the placebo group and 30 patients in surgery with the MCMC group.Patients took either the placebo or the MCMC 2 wk before and after surgery.Postoperative morphology and function filtering bleb,visual acuity,intraocular pressure,postoperative complications,the success rate of filtration surgery and clinical efficacy were observed.RESULTS Fifty patients completed the study.The percentage of functional filtering blebs in the surgery plus MCMC group was 84%at 6 mo after surgery,which was higher than surgery plus placebo group(64%,P<0.05).The surgical success rate in the MCMC and placebo groups were 79%±8.3%and 57%±10.6%respectively(P<0.05).The visual acuity,intraocular pressure and the postoperative complications in the two groups had no significant differences.CONCLUSION Glaucoma filtering surgery while taking MCMC not only reduced excessive scar formation and increased the success rate of functional filtering blebs but also improved the success of glaucoma filtration operations.
文摘Humans are limited in their ability to perform multiple cognitive-motor tasks in parallel. In eight participants, we examined whether transcranial direct current stimulation (tDCS) to dorsal premotor cortex (PMD) could attenuate a delay of reaction time (RT) while the participants responded to two visual stimuli presented in temporally close succession. We provided anodal, cathodal, or sham tDCS while the participants performed a task requiring two choice responses or a control task requiring two fixed responses. When the interval between the two stimuli was shorter, the RTs were delayed in both tasks, but anodal tDCS shortened them only in the former task, probably by promoting the response selection function of PMD. Non-invasive neuro-modulation to the brain can boost human ability to multi-task.
文摘Background: The primary motor cortex (M1) stimulation (MCS) is a useful tool for attenuation of the peripheral neuropathic pain in patients with pharmacologically refractory pain. Furthermore, that neurological procedure may also cause antinociception in rodents with neuropathic pain. Cold allodynia is a frequent clinical finding in patients with neuropathic pain, then, we evaluated if an adapted model of neuropathy induced by chronic constriction injury (CCI) of the ischiadicus nervus (sciatic nerve) produces cold allodynia in an animal model of chronic pain. In addition, we also investigated the effect of the electrical stimulation of the M1 on chronic neuropathic pain condition in laboratory animals. Methods: Male Wistar rats were used. An adapted model of peripheral mononeuropathy induced by CCI was carried out by placing a single loose ligature around the right sciatic nerve. The acetone test was used to evaluate the cold allodynia in CCI or Sham (without ligature) rats. The MCS (M1) was performed at low-frequency (20 μA, 100 Hz) during 15 s by deep brain stimulation (DBS-Thomas Recording device) 21 days after CCI or Sham procedures. The cold allodynia was measured before and immediately after the neurostimulation of M1 in the following time-window: 0, 15 and 30 min after MCS. Results: Cold allodynia threshold increased in animals with chronic neuropathic pain submitted to the acetone test 21 days after the CCI surgery. The M1-stimulation by DBS procedure decreased the cold allodynia immediately and until 30 min after M1-stimulation in rats with chronic neuropathic pain. Conclusion: The current proposal for a CCI model by a single loose ligature of the sciatic nerve can be employed as an experimental model of chronic neuropathic pain in rats submitted to peripheral nervous system injury. The M1-stimulation produced antinociception in rats with chronic neuropathic pain. Thus, we reinforced that the MCS decreases cold allodynia in laboratory animals submitted to persistent sciatic nerve constriction and can be a more reasonable procedure for the treatment of chronic intractable neuropathic pain.
基金supported by the National Natural Science Foundation of China,Nos.82171346(to YZW)82171269(to JLY)+1 种基金82171471(to HF)Beijing Nova Program,No.Z201100006820076(to JLY).
文摘The adult cortex has long been regarded as non-neurogenic.Whether injury can induce neurogenesis in the adult cortex is still controversial.Here,we report that focal ischemia stimulates a transient wave of local neurogenesis.Using 5′-bromo-2′-deoxyuridine labeling,we demonstrated a rapid generation of doublecortin-positive neuroblasts that died quickly in mouse cerebral cortex following ischemia.Nestin-Cre^(ER)-based cell ablation and fate mapping showed a small contribution of neuroblasts by subventricular zone neural stem cells.Using a mini-photothrombotic ischemia mouse model and retrovirus expressing green fluorescent protein labeling,we observed maturation of locally generated new neurons.Furthermore,fate tracing analyses using PDGFRα-,GFAP-,and Sox2-Cre^(ER) mice showed a transient wave of neuroblast generation in mild ischemic cortex and identified that Sox2-positive astrocytes were the major neurogenic cells in adult cortex.In addition,a similar upregulation of Sox2 and appearance of neuroblasts were observed in the focal ischemic cortex of Macaca mulatta.Our findings demonstrated a transient neurogenic response of Sox2-positive astrocytes in ischemic cortex,which suggests the possibility of inducing neuronal regeneration by amplifying this intrinsic response in the future.
文摘Stroke is a physiological alteration associated with changes in blood flow that can result in sudden-onset cognitive impairment. It has a heterogenous clinical presentation with varying degrees of severity correlated with specific central nervous system zones or areas, and its prognosis is uncertain. This case study describes a 62-year-old male patient with acquired brain damage of the anterior cingulate cortex as a result of an ischemic event in the territory of the left anterior cerebral artery. Cognitive function was assessed using the neuropsychological executive function and frontal lobe test battery (BANFE-2) as well as other neuropsychological tests. The results show a profile of higher mental functions characterized by the presence of dysexecutive syndrome with marked behavioral alteration and diencephalic amnesia. .
文摘The dorsal area of the anterior cingulate cortex (ACC) constructs the salience network associated with the anterior insular cortex. Conventional brain imaging studies, such as functional magnetic resonance imaging (fMRI), have demonstrated that relational memory formation occurs in the ACC. However, how such memory is encoded and retrieved remains unknown due to limited time resolution of conventional fMRI. This study aimed to investigate temporal dynamics of the dorsal ACC (dACC) during word-pair tasks based on a newly developed event-related deep brain activity (ER-DBA) method using occipital electroencephalogram (EEG) signal powers. The method assesses dACC activity at a temporal resolution of approximately 0.3 s beyond the conventional resolution limit. We found that transient deactivation of dACC during the presentation of the second word of each pair was essential for encoding success regardless of whether the words were related or unrelated. We also found that memory accuracy was not affected by the intervention of inter-trials until the recall trial. Taken together, these findings suggest that dACC deactivation for encoding success is accompanied with short-term potentiation essential for durability of memory. We further found that false memory formation associated with the presentation of word pairs was occasionally committed. In such cases, dACC exhibited a similar transient deactivation although false memory commission was independent of related or unrelated conditions. Our findings suggest that encoding and retrieval of associates are paralleled and that simultaneous production of associates seems to be an essential strategy for successful relational memory formation. The study was limited to the assessment of dACC activity and did not account for other regional brain activities or receptor regulation related to short-term potentiation. We detected fast behavior of dACC during relational memory formation using the novel ER-DBA method. Such temporal dynamics will be important for eliciting underlying mechanisms of memory dysfunctions.
文摘[Objectives]This study was conducted to establish the method for simultaneous determination of six active components.[Methods]Simultaneous determination of chlorogenic acid,phellodendrine,magnoflorine,jatrorrhizine,palmatine and berberine in Cortex Phellodendri was carried out by HPLC with a Diamonsil C18(4.6 mm×250 mm,5μm)column was used.The mobile phase was acetonitrile-water(1‰acetic acid,2 mmol ammonium acetate)solution in gradient elution.The detection wavelength was set at 280 nm,and the column temperature was kept at 25℃and the flow rate was 1 ml/min.[Results]The linear ranges of chlorogenic acid,phellodendrine,magnoflorine,jatrorrhizine,palmatine and berberine were 20.00-320.00,18.75-130.00,25.00-200.00,5.00-100.00,20.00-200.00,and 0.09-1.80 mg/L,respectively.The average recovery was 98.1%,99.4%,97.5%,97.3%,104.0%,and 98.5%,respectively;and the RSDs were 0.5%,0.6%,0.8%,1.0%,1.4%,and 0.9%,respectively.[Conclusions]The method is convenient,stable,reliable and suitable for quality control of Cortex Phellodendri.