期刊文献+
共找到350篇文章
< 1 2 18 >
每页显示 20 50 100
A drug-loaded flexible substrate improves the performance of conformal cortical electrodes 被引量:1
1
作者 Rongrong Qin Tian Li +7 位作者 Yifu Tan Fanqi Sun Yuhao Zhou Ronghao Lv Xiaoli You Bowen Ji Peng Li Wei Huang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期399-412,共14页
Cortical electrodes are a powerful tool for the stimulation and/or recording of electrical activity in the nervous system.However,the inevitable wound caused by surgical implantation of electrodes presents bacterial i... Cortical electrodes are a powerful tool for the stimulation and/or recording of electrical activity in the nervous system.However,the inevitable wound caused by surgical implantation of electrodes presents bacterial infection and inflammatory reaction risks associated with foreign body exposure.Moreover,inflammation of the wound area can dramatically worsen in response to bacterial infection.These consequences can not only lead to the failure of cortical electrode implantation but also threaten the lives of patients.Herein,we prepared a hydrogel made of bacterial cellulose(BC),a flexible substrate for cortical electrodes,and further loaded antibiotic tetracycline(TC)and the anti-inflammatory drug dexamethasone(DEX)onto it.The encapsulated drugs can be released from the BC hydrogel and effectively inhibit the growth of Gram-negative and Gram-positive bacteria.Next,therapeutic cortical electrodes were developed by integrating the drug-loaded BC hydrogel and nine-channel serpentine arrays;these were used to record electrocorticography(ECoG)signals in a rat model.Due to the controlled release of TC and DEX from the BC hydrogel substrate,therapeutic cortical electrodes can alleviate or prevent symptoms associated with the bacterial infection and inflammation of brain tissue.This approach facilitates the development of drug delivery electrodes for resolving complications caused by implantable electrodes. 展开更多
关键词 ANTIBACTERIAL ANTI-INFLAMMATORY Drug loading cortical electrodes Bacterial cellulose hydrogel
下载PDF
MET receptor tyrosine kinase promotes the generation of functional synapses in adult cortical circuits
2
作者 Yuehua Cui Xiaokuang Ma +7 位作者 Jing Wei Chang Chen Neha Shakir Hitesch Guirram Zhiyu Dai Trent Anderson Deveroux Ferguson Shenfeng Qiu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1431-1444,共14页
Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse functi... Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function.We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis.To investigate whether enhancing MET in adult cortex has synapse regenerating potential,we created a knockin mouse line,in which the human MET gene expression and signaling can be turned on in adult(10–12 months)cortical neurons through doxycycline-containing chow.We found that similar to the developing brain,turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons.These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses.Prolonged MET signaling resulted in an increasedα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-Daspartate(AMPA/NMDA)receptor current ratio,indicative of enhanced synaptic function and connectivity.Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain.These findings may have implications for regenerative therapy in aging and neurodegeneration conditions. 展开更多
关键词 aging circuit connectivity cortical circuits molecular mechanisms neural regeneration NEURODEGENERATION synapses
下载PDF
Cortical activity in patients with high-functioning ischemic stroke during the Purdue Pegboard Test:insights into bimanual coordinated fine motor skills with functional near-infrared spectroscopy
3
作者 Siyun Chen Mengchai Mao +4 位作者 Guangyue Zhu Yufeng Chen Yuqi Qiu Bin Ye Dongsheng Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1098-1104,共7页
After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promisi... After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promising intervention to address these deficits.However,the neural basis of the impairment of functional fine motor skills and their relationship to bimanual coordination performance in stroke patients remains unclear,limiting the development of more targeted interventions.To address this gap,our study employed functional near-infrared spectroscopy to investigate cortical responses in patients after stroke as they perform functional tasks that engage fine motor control and coordination.Twenty-four high-functioning patients with ischemic stroke(7 women,17 men;mean age 64.75±10.84 years)participated in this cross-sectional observational study and completed four subtasks from the Purdue Pegboard Test,which measures unimanual and bimanual finger and hand dexterity.We found significant bilateral activation of the sensorimotor cortices during all Purdue Pegboard Test subtasks,with bimanual tasks inducing higher cortical activation than the assembly subtask.Importantly,patients with better bimanual coordination exhibited lower cortical activation during the other three Purdue Pegboard Test subtasks.Notably,the observed neural response patterns varied depending on the specific subtask.In the unaffected hand task,the differences were primarily observed in the ipsilesional hemisphere.In contrast,the bilateral sensorimotor cortices and the contralesional hemisphere played a more prominent role in the bimanual task and assembly task,respectively.While significant correlations were found between cortical activation and unimanual tasks,no significant correlations were observed with bimanual tasks.This study provides insights into the neural basis of bimanual coordination and fine motor skills in high-functioning patients after stroke,highlighting task-dependent neural responses.The findings also suggest that patients who exhibit better bimanual performance demonstrate more efficient cortical activation.Therefore,incorporating bilateral arm training in post-stroke rehabilitation is important for better outcomes.The combination of functional near-infrared spectroscopy with functional motor paradigms is valuable for assessing skills and developing targeted interventions in stroke rehabilitation. 展开更多
关键词 bilateral arm training bimanual coordination cortical activity fine motor dexterity functional near-infrared spectroscopy(fNIRS) high-functioning Purdue Pegboard Test stroke
下载PDF
Transforming growth factor-beta 1 enhances discharge activity of cortical neurons
4
作者 Zhihui Ren Tian Li +5 位作者 Xueer Liu Zelin Zhang Xiaoxuan Chen Weiqiang Chen Kangsheng Li Jiangtao Sheng 《Neural Regeneration Research》 SCIE CAS 2025年第2期548-556,共9页
Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may de... Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may depend on the pathological process and cell types involved.Voltage-gated sodium channels(VGSCs)are essential ion channels for the generation of action potentials in neurons,and are involved in various neuroexcitation-related diseases.However,the effects of TGF-β1 on the functional properties of VGSCs and firing properties in cortical neurons remain unclear.In this study,we investigated the effects of TGF-β1 on VGSC function and firing properties in primary cortical neurons from mice.We found that TGF-β1 increased VGSC current density in a dose-and time-dependent manner,which was attributable to the upregulation of Nav1.3 expression.Increased VGSC current density and Nav1.3 expression were significantly abolished by preincubation with inhibitors of mitogen-activated protein kinase kinase(PD98059),p38 mitogen-activated protein kinase(SB203580),and Jun NH2-terminal kinase 1/2 inhibitor(SP600125).Interestingly,TGF-β1 significantly increased the firing threshold of action potentials but did not change their firing rate in cortical neurons.These findings suggest that TGF-β1 can increase Nav1.3 expression through activation of the ERK1/2-JNK-MAPK pathway,which leads to a decrease in the firing threshold of action potentials in cortical neurons under pathological conditions.Thus,this contributes to the occurrence and progression of neuroexcitatory-related diseases of the central nervous system. 展开更多
关键词 central nervous system cortical neurons ERK firing properties JNK Nav1.3 p38 transforming growth factor-beta 1 traumatic brain injury voltage-gated sodium currents
下载PDF
Possible Cortical Spreading Depression Recorded Intraoperatively Following a Generalized Seizure: Illustrative Case
5
作者 Greg Schaublin Romina Shirka +4 位作者 Nabil Azar Callan Broderick Jayson Neil George R. Lee Kiara Ebinger 《Neuroscience & Medicine》 2024年第3期119-128,共10页
Background: We present a compelling case fitting the phenomenon of cortical spreading depression detected by intraoperative neurophysiological monitoring (IONM) following an intraoperative seizure during a craniotomy ... Background: We present a compelling case fitting the phenomenon of cortical spreading depression detected by intraoperative neurophysiological monitoring (IONM) following an intraoperative seizure during a craniotomy for revascularization. Cortical spreading depression (CSD, also called cortical spreading depolarization) is a pathophysiological phenomenon whereby a wave of depolarization is thought to propagate across the cerebral cortex, creating a brief period of relative neuronal inactivity. The relationship between CSD and seizures is unclear, although some literature has made a correlation between seizures and a cortical environment conducive to CSD. Methods: Intraoperative somatosensory evoked potentials (SSEPs) and electroencephalography (EEG) were monitored continuously during the craniotomy procedure utilizing standard montages. Electrophysiological data from pre-ictal, ictal, and post-ictal periods were recorded. Results: During the procedure, intraoperative EEG captured a generalized seizure followed by a stepwise decrease in somatosensory evoked potential cortical amplitudes, compelling for the phenomenon of CSD. The subsequent partial recovery of neuronal function was also captured electrophysiologically. Discussion: While CSD is considered controversial in some aspects, intraoperative neurophysiological monitoring allowed for the unique analysis of a case demonstrating a CSD-like phenomenon. To our knowledge, this is the first published example of this phenomenon in which intraoperative neurophysiological monitoring captured a seizure, along with a stepwise subsequent reduction in SSEP cortical amplitudes not explained by other variables. 展开更多
关键词 cortical Spreading Depression ELECTROENCEPHALOGRAPHY Intraoperative Neurophysiological Monitoring SEIZURE
下载PDF
The generation and properties of human cortical organoids as a disease model for malformations of cortical development 被引量:2
6
作者 Xiu-Ping Zhang Xi-Yuan Wang +1 位作者 Shu-Na Wang Chao-Yu Miao 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2119-2126,共8页
As three-dimensional“organ-like”aggregates,human cortical organoids have emerged as powerful models for studying human brain evolution and brain disorders with unique advantages of humanspecificity,fidelity and mani... As three-dimensional“organ-like”aggregates,human cortical organoids have emerged as powerful models for studying human brain evolution and brain disorders with unique advantages of humanspecificity,fidelity and manipulation.Human cortical organoids derived from human pluripotent stem cells can elaborately replicate many of the key properties of human cortical development at the molecular,cellular,structural,and functional levels,including the anatomy,functional neural network,and interaction among different brain regions,thus facilitating the discovery of brain development and evolution.In addition to studying the neuro-electrophysiological features of brain cortex development,human cortical organoids have been widely used to mimic the pathophysiological features of cortical-related disease,especially in mimicking malformations of cortical development,thus revealing pathological mechanism and identifying effective drugs.In this review,we provide an overview of the generation of human cortical organoids and the properties of recapitulated cortical development and further outline their applications in modeling malformations of cortical development including pathological phenotype,underlying mechanisms and rescue strategies. 展开更多
关键词 cortical development disease models human cortical organoids human cortical spheroids human pluripotent stem cells malformations of cortical development telencephalon organoids whole brain organoids
下载PDF
Application of the cortical bone trajectory technique in posterior lumbar fixation 被引量:2
7
作者 Shi-Bo Peng Xi-Chuan Yuan +1 位作者 Wei-Zhong Lu Ke-Xiao Yu 《World Journal of Clinical Cases》 SCIE 2023年第2期255-267,共13页
The cortical bone trajectory(CBT) is a novel technique in lumbar fixation and fusion.The unique caudocephalad and medial-lateral screw trajectories endow it with excellent screw purchase for vertebral fixation via a m... The cortical bone trajectory(CBT) is a novel technique in lumbar fixation and fusion.The unique caudocephalad and medial-lateral screw trajectories endow it with excellent screw purchase for vertebral fixation via a minimally invasive method.The combined use of CBT screws with transforaminal or posterior lumbar interbody fusion can treat a variety of lumbar diseases,including spondylolisthesis or stenosis,and can also be used as a remedy for revision surgery when the pedicle screw fails.CBT has obvious advantages in terms of surgical trauma,postoperative recovery,prevention and treatment of adjacent vertebral disease,and the surgical treatment of obese and osteoporosis patients.However,the concept of CBT internal fixation technology appeared relatively recently;consequently,there are few relevant clinical studies,and the long-term clinical efficacy and related complications have not been reported.Therefore,large sample and prospective studies are needed to further reveal the long-term complications and fusion rate.As a supplement to the traditional pedicle trajectory fixation technique,the CBT technique is a good choice for the treatment of lumbar diseases with accurate screw placement and strict indications and is thus deserving of clinical recommendation. 展开更多
关键词 cortical bone trajectory Management of midle line fusion Lumbar interbody fusion Lumbar surgery REVIEW
下载PDF
Alpha2-adrenergic receptor activation reinstates motor deficits in rats recovering from cortical injury 被引量:1
8
作者 Gabriela García-Díaz Laura ERamos-Languren +6 位作者 Carmen Parra-Cid Joel Lomelí Sergio Montes Camilo Ríos Antonio Bueno-Nava Ignacio Valencia-Hernández Rigoberto González-Piña 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期875-880,共6页
Norepinephrine plays an important role in motor functional recovery after a brain injury caused by ferrous chloride.Inhibition of norepinephrine release by clonidine is correlated with motor deficits after motor corte... Norepinephrine plays an important role in motor functional recovery after a brain injury caused by ferrous chloride.Inhibition of norepinephrine release by clonidine is correlated with motor deficits after motor cortex injury.The aim of this study was to analyze the role ofα-adrenergic receptors in the restoration of motor deficits in recovering rats after brain damage.The rats were randomly assigned to the sham and injury groups and then treated with the following pharmacological agents at 3 hours before and 8 hours,3 days,and 20 days after ferrous chloride-induced cortical injury:saline,clonidine,efaroxan(a selective antagonist ofα-adrenergic receptors)and clonidine+efaroxan.The sensorimotor score,the immunohistochemical staining forα-adrenergic receptors,and norepinephrine levels were evaluated.Eight hours post-injury,the sensorimotor score and norepinephrine levels in the locus coeruleus of the injured rats decreased,and these effects were maintained 3 days post-injury.However,20 days later,clonidine administration diminished norepinephrine levels in the pons compared with the sham group.This effect was accompanied by sensorimotor deficits.These effects were blocked by efaroxan.In conclusion,an increase inα-adrenergic receptor levels was observed after injury.Clonidine restores motor deficits in rats recovering from cortical injury,an effect that was prevented by efaroxan.The underlying mechanisms involve the stimulation of hypersensitiveα-adrenergic receptors and inhibition of norepinephrine activity in the locus coeruleus.The results of this study suggest thatαreceptor agonists might restore deficits or impede rehabilitation in patients with brain injury,and therefore pharmacological therapies need to be prescribed cautiously to these patients. 展开更多
关键词 alpha2-adrenoceptors ambulatory behavior CLONIDINE cortical injury EFAROXAN functional recovery immunohistochemistry motor deficit norepinephrine sensorimotor score
下载PDF
Antioxidant procyanidin B2 protects oocytes against cryoinjuries via mitochondria regulated cortical tension
9
作者 Qingrui Zhuan Jun Li +8 位作者 Xingzhu Du Luyao Zhang Lin Meng Yuwen Luo Dan Zhou Hongyu Liu Pengcheng Wan Yunpeng Hou Xiangwei Fu 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第1期166-187,共22页
Background:Irreversible cryodamage caused by oocyte vitrification limited its wild application in female fertility preservation.Antioxidants were always used to antagonist the oxidative stress caused by vitrification.... Background:Irreversible cryodamage caused by oocyte vitrification limited its wild application in female fertility preservation.Antioxidants were always used to antagonist the oxidative stress caused by vitrification.However,the comprehensive mechanism underlying the protective role of antioxidants has not been studied.Procyanidin B2(PCB2)is a potent natural antioxidant and its functions in response to vitrification are still unknown.In this study,the effects of PCB2 on vitrified-thawed oocytes and subsequent embryo development were explored,and the mechanisms underlying the protective role of PCB2 were systematically elucidated.Results:Vitrification induced a marked decline in oocyte quality,while PCB2 could improve oocyte viability and further development after parthenogenetic activation.A subsequent study indicated that PCB2 effectively attenuated vitrification-induced oxidative stress,rescued mitochondrial dysfunction,and improved cell viability.Moreover,PCB2 also acts as a cortical tension regulator apart from strong antioxidant properties.Increased cortical tension caused by PCB2 would maintain normal spindle morphology and promote migration,ensure correct meiosis progression and finally reduce the aneuploidy rate in vitrified oocytes.Further study reveals that ATP biosynthesis plays a crucial role in cortical tension regulation,and PCB2 effectively increased the cortical tension through the electron transfer chain pathway.Additionally,PCB2 would elevate the cortical tension in embryo cells at morula and blastocyst stages and further improve blastocyst quality.What's more,targeted metabolomics shows that PCB2 has a beneficial effect on blastocyst formation by mediating saccharides and amino acids metabolism.Conclusions:Antioxidant PCB2 exhibits multi-protective roles in response to vitrification stimuli through mitochondria-mediated cortical tension regulation. 展开更多
关键词 cortical tension MEIOSIS MITOCHONDRIA OOCYTES Procyanidin B2 VITRIFICATION
下载PDF
Experimental Investigation of Material Removal in Elliptical Vibration Cutting of Cortical Bone
10
作者 Wei Bai Yuhao Zhai +5 位作者 Jiaqi Zhao Guangchao Han Linzheng Ye Xijing Zhu Liming Shu Dong Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期106-115,共10页
To benefit tissue removal and postoperative rehabilitation,increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy.A novel elliptical vibration cutting(EVC)has been introdu... To benefit tissue removal and postoperative rehabilitation,increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy.A novel elliptical vibration cutting(EVC)has been introduced for bone cutting compared with conventional cutting(CC)in this paper.With the assistance of high-speed microscope imaging and the dynamometer,the material removals of cortical bone and their cutting forces from two cutting regimes were recorded and analysed comprehensively,which clearly demonstrated the chip morphology improvement and the average cutting force reduction in the EVC process.It also revealed that the elliptical vibration of the cutting tool could promote fracture propagation along the shear direction.These new findings will be of important theoretical and practical values to apply the innovative EVC process to the surgical procedures of the osteotomy. 展开更多
关键词 Elliptical vibration cutting cortical bone Material removal Chip formation Chip morphology Fracture propagation Cutting force OSTEOTOMY
下载PDF
Cross-sectional associations between cortical thiclmess and physical activity in older adults with spontaneous memory complaints:The MAPT Study
11
作者 Jérémy Raffin Yves Rolland +5 位作者 Clara Fischer Jean-Francois Mangin Audrey Gabelle Bruno Vellas Philipe de Souto Barreto the MAPT/DSA Group 《Journal of Sport and Health Science》 SCIE CSCD 2023年第3期324-332,共9页
Background:Age-related changes in brain structure may constitute the starting point for cerebral function alteration.Physical activity(PA)demonstrated favorable associations with total brain volume,but its relationshi... Background:Age-related changes in brain structure may constitute the starting point for cerebral function alteration.Physical activity(PA)demonstrated favorable associations with total brain volume,but its relationship with cortical thickness(CT)remains unclear.We investigated the cross-sectional associations between PA level and CT in community-dwelling people aged 70 years and older.Methods:A total of 403 older adults aged 74.8±4.0 years(mean±SD)who underwent a baseline magnetic resonance imaging examination and who had data on PA and confounders were included.PA was assessed with a questionnaire.Participants were categorized according to PA levels.Multiple linear regressions were used to compare the brain CT(mm)of the inactive group(no PA at all)with 6 active groups(growing PA levels)in 34 regions of interest.Results:Compared with inactive persons,people who achieved PA at a level of 1500-1999 metabolic equivalent task-min/week(i.e.,about6-7 h of brisk walking for exercise) and those who achieved it at 2000-2999 metabolic equivalent task-min/week(i.e.,8-11 h of brisk walking for exercise)had higher CT in the fusiform gyrus and the temporal pole.Additionally,dose-response associations between PA and CT were found in the fusiform gyrus(B=0.011,SE=0.004,adj.p=0.035),the temporal pole(B=0.026,SE=0.009,adj.p=0.048),and the caudal middle frontal gyrus,the entorhinal,medial orbitofrontal,lateral occipital,and insular cortices.Conclusion:This study demonstrates a positive association between PA level and CT in temporal areas such as the fusiform gyrus,a brain region often associated to Alzheimer’s disease in people aged 70 years and older.Future investigations focusing on PA type may help to fulfil remaining knowledge gaps in this field. 展开更多
关键词 Alzheimer's disease Brain aging cortical thickness Physical activity
下载PDF
Modified constraint-induced movement therapy enhances cortical plasticity in a rat model of traumatic brain injury:a resting-state functional MRI study
12
作者 Cheng-Cheng Sun Yu-Wen Zhang +10 位作者 Xiang-Xin Xing Qi Yang Ling-Yun Cao Yu-Feng Cheng Jing-Wang Zhao Shao-Ting Zhou Dan-Dan Cheng Ye Zhang Xu-Yun Hua He Wang Dong-Sheng Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期410-415,共6页
Modified constraint-induced movement therapy(mCIMT)has shown beneficial effects on motor function improvement after brain injury,but the exact mechanism remains unclear.In this study,amplitude of low frequency fluctua... Modified constraint-induced movement therapy(mCIMT)has shown beneficial effects on motor function improvement after brain injury,but the exact mechanism remains unclear.In this study,amplitude of low frequency fluctuation(ALFF)metrics measured by resting-state functional magnetic resonance imaging was obtained to investigate the efficacy and mechanism of mCIMT in a control co rtical impact(CCI)rat model simulating traumatic brain injury.At 3 days after control co rtical impact model establishment,we found that the mean ALFF(mALFF)signals were decreased in the left motor cortex,somatosensory co rtex,insula cortex and the right motor co rtex,and were increased in the right corpus callosum.After 3 weeks of an 8-hour daily mClMT treatment,the mALFF values were significantly increased in the bilateral hemispheres compared with those at 3 days postoperatively.The mALFF signal valu es of left corpus callosum,left somatosensory cortex,right medial prefro ntal cortex,right motor co rtex,left postero dorsal hippocampus,left motor cortex,right corpus callosum,and right somatosensory cortex were increased in the mCIMT group compared with the control cortical impact group.Finally,we identified brain regions with significantly decreased mALFF valu es at 3 days postoperatively.Pearson correlation coefficients with the right forelimb sliding score indicated that the improvement in motor function of the affected upper limb was associated with an increase in mALFF values in these brain regions.Our findings suggest that functional co rtical plasticity changes after brain injury,and that mCIMT is an effective method to improve affected upper limb motor function by promoting bilateral hemispheric co rtical remodeling.mALFF values correlate with behavio ral changes and can potentially be used as biomarkers to assess dynamic cortical plasticity after traumatic brain injury. 展开更多
关键词 amplitude of low frequency fluctuation cortical plasticity functional magnetic resonance imaging modified constraint-induced movement therapy traumatic brain injury
下载PDF
On the functions of astrocyte-mediated neuronal slow inward currents 被引量:2
13
作者 Balázs Pál 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2602-2612,共11页
Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events a... Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events are significantly slower than the excitatory postsynaptic currents.Parameters of slow inward currents are determined by seve ral factors including the mechanisms of astrocytic activation and glutamate release,as well as the diffusion pathways from the release site towards the extra synaptic recepto rs.Astrocytes are stimulated by neuronal network activity,which in turn excite neurons,forming an astrocyte-neuron feedback loop.Mostly as a consequence of brain edema,astrocytic swelling can also induce slow inward currents under pathological conditions.There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level.These events often occur in synchro ny on neurons located in the same astrocytic domain.Besides synchronization of neuronal excitability,slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity.In addition,slow inward currents are also subject to non-synaptic plasticity triggered by long-la sting stimulation of the excitatory inputs.Of note,there might be important regionspecific differences in the roles and actions triggering slow inward currents.In greater networks,the pathophysiological roles of slow inward currents can be better understood than physiological ones.Slow inward currents are identified in the pathophysiological background of autism,as slow inward currents drive early hypersynchrony of the neural networks.Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes.These events are related to epilepsy,but also found in Alzheimer's disease,Parkinson's disease,and stroke,leading to the decline of cognitive functions.Events with features overlapping with slow inward currents(excitatory,N-methyl-Daspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke,traumatic brain injury,or epilepsy.One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation.However,to state this,more experimental evidence from greater neuronal networks or the level of the individual is needed.In this review,I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it. 展开更多
关键词 ASTROCYTE cortical spreading depolarization gliotransmission GLUTAMATE neural synchronization NMDA receptor paroxysmal depolarizational shift slow inward current
下载PDF
Connecting neurodevelopment to neurodegeneration:a spotlight on the role of kinesin superfamily protein 2A(KIF2A) 被引量:1
14
作者 Nuria Ruiz-Reig Janne Hakanen Fadel Tissir 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期375-379,共5页
Microtubules play a central role in cytoskeletal changes during neuronal development and maintenance.Microtubule dynamics is essential to polarity and shape transitions underlying neural cell division,differentiation,... Microtubules play a central role in cytoskeletal changes during neuronal development and maintenance.Microtubule dynamics is essential to polarity and shape transitions underlying neural cell division,differentiation,motility,and maturation.Kinesin superfamily protein 2A is a member of human kinesin 13 gene family of proteins that depolymerize and destabilize microtubules.In dividing cells,kinesin superfamily protein 2A is involved in mitotic progression,spindle assembly,and chromosome segregation.In postmitotic neurons,it is required for axon/dendrite specification and extension,neuronal migration,connectivity,and survival.Humans with kinesin superfamily protein 2A mutations suffer from a variety of malformations of cortical development,epilepsy,autism spectrum disorder,and neurodegeneration.In this review,we discuss how kinesin superfamily protein 2A regulates neuronal development and function,and how its deregulation causes neurodevelopmental and neurological disorders. 展开更多
关键词 brain disorders cortical malformations KINESIN MICROTUBULES NEURODEGENERATION NEURODEVELOPMENT
下载PDF
Gabapentinoids for the treatment of stroke
15
作者 Ying Zhang Chenyu Zhang +3 位作者 Xiaoli Yi Qi Wang Tiejun Zhang Yuwen Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1509-1516,共8页
Gabapentinoid drugs(pregabalin and gabapentin) have been successfully used in the treatment of neuro pathic pain and in focal seizure prevention.Recent research has demonstrated their potent activities in modulating n... Gabapentinoid drugs(pregabalin and gabapentin) have been successfully used in the treatment of neuro pathic pain and in focal seizure prevention.Recent research has demonstrated their potent activities in modulating neurotransmitter release in neuronal tissue,oxidative stress,and inflammation,which matches the mechanism of action via voltage-gated calcium channels.In this review,we briefly elaborate on the medicinal history and ligand-binding sites of gabapentinoids.We systematically summarize the preclinical and clinical research on gabapentinoids in stroke,including ischemic stro ke,intracerebral hemorrhage,subarachnoid hemorrhage,seizures after stro ke,cortical spreading depolarization after stroke,pain after stroke,and nerve regeneration after stro ke.This review also discusses the potential to rgets of gabapentinoids in stroke;however,the existing results are still unce rtain regarding the effect of gabapentinoids on stroke and related diseases.Further preclinical and clinical trials are needed to test the therapeutic potential of gabapentinoids in stroke.Therefore,gabapentinoids have both opportunities and challenges in the treatment of stroke. 展开更多
关键词 cortical spreading depolarization gabapentinoid intracerebral hemorrhage pain after stroke STROKE subarachnoid hemorrhage
下载PDF
Endorepellin downregulation promotes angiogenesis after experimental traumatic brain injury
16
作者 Qian Zhang Yao Jing +10 位作者 Qiuyuan Gong Lin Cai Ren Wang Dianxu Yang Liping Wang Meijie Qu Hao Chen Yaohui Tang Hengli Tian Jun Ding Zhiming Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1092-1097,共6页
Endorepellin plays a key role in the regulation of angiogenesis,but its effects on angiogenesis after traumatic brain injury are unclear.This study explored the effects of endorepellin on angiogenesis and neurobehavio... Endorepellin plays a key role in the regulation of angiogenesis,but its effects on angiogenesis after traumatic brain injury are unclear.This study explored the effects of endorepellin on angiogenesis and neurobehavioral outcomes after traumatic brain injury in mice.Mice were randomly divided into four groups:sham,controlled cortical impact only,adeno-associated virus(AAV)-green fluorescent protein,and AAV-shEndorepellin-green fluorescent protein groups.In the controlled cortical impact model,the transduction of AAV-shEndorepellin-green fluorescent protein downregulated endorepellin while increasing the number of CD31+/Ki-67+proliferating endothelial cells and the functional microvessel density in mouse brain.These changes resulted in improved neurological function compared with controlled cortical impact mice.Western blotting revealed increased expression of vascular endothelial growth factor and angiopoietin-1 in mice treated with AAV-shEndorepellin-green fluorescent protein.Synchrotron radiation angiography showed that endorepellin downregulation promoted angiogenesis and increased cortical neovascularization,which may further improve neurobehavioral outcomes.Furthermore,an in vitro study showed that downregulation of endorepellin increased tube formation by human umbilical vein endothelial cells compared with a control.Mechanistic analysis found that endorepellin downregulation may mediate angiogenesis by activating vascular endothelial growth factor-and angiopoietin-1-related signaling pathways. 展开更多
关键词 ANGIOGENESIS controlled cortical impact endorepellin neurological function traumatic brain injury
下载PDF
Establishment of human cerebral organoid systems to model early neural development and assess the central neurotoxicity of environmental toxins
17
作者 Daiyu Hu Yuanqing Cao +6 位作者 Chenglin Cai Guangming Wang Min Zhou Luying Peng Yantao Fan Qiong Lai Zhengliang Gao 《Neural Regeneration Research》 SCIE CAS 2025年第1期242-252,共11页
Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-li... Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies. 展开更多
关键词 cadmium cell death cell proliferation cortical development environmental toxins neural progenitor cells NEUROGENESIS NEUROTOXICOLOGY ORGANOIDS stem cells
下载PDF
Sepsis-associated liver injury:Mechanisms and potential therapeutic targets
18
作者 Jia-Wen Chen Chen-Yi Liu +3 位作者 Shu Li Shi-Wen Wu Chao Cai Ming-Qin Lu 《World Journal of Gastroenterology》 SCIE CAS 2024年第42期4518-4522,共5页
In this editorial,we examined a recent article in the World Journal of Gastroenterology that focused on sepsis-associated liver injury(SLI)and its treatment.SLI is a serious complication of sepsis,primarily caused by ... In this editorial,we examined a recent article in the World Journal of Gastroenterology that focused on sepsis-associated liver injury(SLI)and its treatment.SLI is a serious complication of sepsis,primarily caused by microcirculatory disturbances,the gut-liver axis,and inflammatory responses.Specific treatment recommendations for SLI are lacking.The gut-liver axis represents a potential therapeutic target,with metformin showing promise in modulating the gut microbiome and enhancing intestinal barrier function.Although immunomodulatory therapies are being explored,anti-tumor necrosis factor agents and interleukin-1 receptor antagonists have not demonstrated significant clinical benefits.Statins may reduce liver inflammation and prevent injury in sepsis,but their clinical application is limited.Reduced D-related human leucocyte antigen expression on monocytes and lymphocytes suggests immune suppression in patients,indicating that corticosteroids could reverse clinical deterioration in severe infections and address adrenal cortical insufficiency.Current large-scale studies on glucocorticoid therapy for sepsis have yielded mixed results,likely due to inadequate assessment of the immune status of the host.Future research should prioritize the development of personalized immunotherapy tailored to patients’immune profiles,focusing on identifying novel indicators of immune status and advancing immunomodulatory targets and therapeutics for septic patients. 展开更多
关键词 Sepsis Sepsis-associated liver injury Gut-liver axis Immunosuppression Inflammation Immune dysregulation Glucocorticoid Adrenal cortical insufficiency
下载PDF
Hemichorea in patients with temporal lobe infarcts: Two case reports
19
作者 Xu-Dong Wang Xing Li Chun-Lian Pan 《World Journal of Clinical Cases》 SCIE 2024年第4期806-813,共8页
BACKGROUND Hemichorea and other hyperkinetic movement disorders are uncommon present-ations of stroke and are usually secondary to deep infarctions affecting the basal ganglia and thalamus.Therefore,temporal ischemic ... BACKGROUND Hemichorea and other hyperkinetic movement disorders are uncommon present-ations of stroke and are usually secondary to deep infarctions affecting the basal ganglia and thalamus.Therefore,temporal ischemic lesions causing hemichorea are rare.We report the cases of two patients with acute ischemic temporal lobe infarct strokes that presented as hemichorea.CASE SUMMARY Patient 1:An 82-year-old woman presented with a 1-mo history of involuntary movement of the left extremity,which was consistent with hemichorea.Her diffusion-weighted imaging(DWI)revealed an acute ischemic stroke that predominantly affected the right temporal cortex,and magnetic resonance angiography of the head showed significant stenosis of the right middle cerebral artery(MCA).Treatment with 2.5 mg of olanzapine per day was initiated.When she was discharged from the hospital,her symptoms appeared to have improved compared with those previously observed.Twenty-seven days after the first admission,she was readmitted due to acute ischemic stroke.Computed tomogra-phy perfusion showed marked hypoperfusion in the right MCA territory.An emergency transfemoral cerebral angiogram was performed and showed severe stenosis in the M1 segment of the right MCA.After percutaneous transluminal angioplasty was successfully performed,abnormal movements or other neuro-logic problems did not occur.Patient 2:A 76-year-old man was admitted to our hospital for a 7-d history of right-upper-sided involuntary movements.DWI showed an acute patchy ischemic stroke in the left temporal lobe without basal ganglia involvement.Subsequent diffusion tensor imaging confirmed fewer white matter fiber tracts on the left side than on the opposite side.Treatment with 2.5 mg of olanzapine per day improved his condition,and he was discharged.CONCLUSION When acute hemichorea suddenly appears,temporal cortical ischemic stroke should be considered a possible diagnosis.In addition,hemichorea may be a sign of impending cerebral infarction with MCA stenosis. 展开更多
关键词 Acute ischemic stroke Temporal ischemic stroke Movement disorders cortical hemichorea Case report
下载PDF
Association between intercellular adhesion molecule-1 to depression and blood-brain barrier penetration in cerebellar vascular disease
20
作者 Ju-Luo Chen Rui Wang +2 位作者 Pei-Qi Ma You-Meng Wang Qi-Qiang Tang 《World Journal of Psychiatry》 SCIE 2024年第11期1661-1670,共10页
BACKGROUND Cerebral small vessel disease(CSVD)is a prevalent cerebrovascular disease in clinical practice that is often associated with macrovascular disease.A clear understanding of the underlying causes of CSVD rema... BACKGROUND Cerebral small vessel disease(CSVD)is a prevalent cerebrovascular disease in clinical practice that is often associated with macrovascular disease.A clear understanding of the underlying causes of CSVD remains elusive.AIM To explore the association between intercellular adhesion molecule-1(ICAM-1)and blood-brain barrier(BBB)penetration in CSVD.METHODS This study included patients admitted to Fuyang People’s Hospital and Fuyang Community(Anhui,China)between December 2021 and March 2022.The study population comprised 142 patients,including 80 in the CSVD group and 62 in the control group.Depression was present in 53 out of 80 patients with CSVD.Multisequence magnetic resonance imaging(MRI)and dynamic contrast-enhanced MRI were applied in patients to determine the brain volume,cortical thickness,and cortical area of each brain region.Moreover,neuropsychological tests including the Hamilton depression scale,mini-mental state examination,and Montreal cognitive assessment basic scores were performed.RESULTS The multivariable analysis showed that age[P=0.011;odds ratio(OR)=0.930,95%confidence interval(CI):0.880-0.983]and ICAM-1 levels(P=0.023;OR=1.007,95%CI:1.001-1.013)were associated with CSVD.Two regions of interest(ROIs;ROI3 and ROI4)in the white matter showed significant(both P<0.001;95%CI:0.419-0.837 and 0.366-0.878)differences between the two groups,whereas only ROI1 in the gray matter showed signi-ficant difference(P=0.046;95%CI:0.007-0.680)between the two groups.ICAM-1 was significantly correlated(all P<0.05)with cortical thickness in multiple brain regions in the CSVD group.CONCLUSION This study revealed that ICAM-1 levels were independently associated with CSVD.ICAM-1 may be associated with cortical thickness in the brain,predominantly in the white matter,and a significant increase in BBB permeability,proposing the involvement of ICAM-1 in BBB destruction. 展开更多
关键词 Cerebral small vessel disease Intercellular adhesion molecule-1 Blood-brain barrier penetration cortical thickness White matter
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部