期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Survey on Mixed Spin P-Fields
1
作者 Huai-Liang CHANG Jun LI +1 位作者 Wei-Ping LI Chiu-Chu Melissa LIU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2017年第4期869-882,共14页
The mixed spin P-fields (MSP for short) theory sets up a geometric platform to relate Gromov-Witten invariants of the quintic three-fold and Fan-Jarvis-Ruan-Witten invariants of the quintic polynomial in five variab... The mixed spin P-fields (MSP for short) theory sets up a geometric platform to relate Gromov-Witten invariants of the quintic three-fold and Fan-Jarvis-Ruan-Witten invariants of the quintic polynomial in five variables. It starts with Wittens vision and the P-fields treatment of GW invariants and FJRW invaxiants. Then it briefly discusses the master space technique and its application to the set-up of the MSP moduli. Some key results in MSP theory are explained and some examples are provided. 展开更多
关键词 Mixed Spin P-fields GW invariants FJRW invariants P-fields cosection localization
原文传递
Low degree GW invariants of surfaces Ⅱ
2
作者 KIEM Young-Hoon LI Jun 《Science China Mathematics》 SCIE 2011年第8期1679-1706,共28页
We prove a conjectural formula of Maulik-Pandharipande on the degree one and two GW invariants of a surface with a smooth canonical divisor.We use the method of degeneration and the localized GW invariants introduced ... We prove a conjectural formula of Maulik-Pandharipande on the degree one and two GW invariants of a surface with a smooth canonical divisor.We use the method of degeneration and the localized GW invariants introduced by the authors. 展开更多
关键词 Gromov-Witten invariant cosection degeneration formula localized virtual cycle
原文传递
A Vanishing Result for Donaldson Thomas Invariants of P^1 Scroll
3
作者 Huai Liang CHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第12期2079-2084,共6页
Let S be a smooth algebraic surface and let L be a line bundle on S.Suppose there is a holomorphic two form over S with zero loci to be a curve C.We show that the DonaldsonThomas invariant of the P^1 scroll X = P(L+... Let S be a smooth algebraic surface and let L be a line bundle on S.Suppose there is a holomorphic two form over S with zero loci to be a curve C.We show that the DonaldsonThomas invariant of the P^1 scroll X = P(L+Бs) vanishes unless the curves being enumerated lie in D = P(L︱C+БC).Our method is cosection localization of Y.-H.Kiem and J.Li. 展开更多
关键词 cosection DT invariants two form
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部