One of the main goals of modern cosmic microwave background (CMB) missions is to measure the tensor-to-scalar ratio r accurately to constrain inflation models. Due to ignorance about the reionization history Xe (z...One of the main goals of modern cosmic microwave background (CMB) missions is to measure the tensor-to-scalar ratio r accurately to constrain inflation models. Due to ignorance about the reionization history Xe (z), this analysis is usu- ally done by assuming an instantaneous reionization Xe (z) which, however, can bias the best-fit value of r. Moreover, due to the strong mixing of B-mode and E-mode polarizations in cut-sky measurements, multiplying the sky coverage fraction fsky by the full-sky likelihood would not give satisfactory results. In this work, we forecast constraints on r for the Planck mission taking into account the general reionization scenario and cut-sky effects. Our results show that by applying an N-point interpo- lation analysis to the reionization history, the bias induced by the assumption of in- stantaneous reionization is removed and the value of r is constrained within 5% error level, if the true value of r is greater than about 0.1.展开更多
From Baryon Acoustic Oscillation measurements with Sloan Digital Sky Survey SDSS DR14 galaxies, and the acoustic horizon angle measured by the Planck Collaboration, we obtain Ωm=0.2724±0.0047, and h+0.020&sd...From Baryon Acoustic Oscillation measurements with Sloan Digital Sky Survey SDSS DR14 galaxies, and the acoustic horizon angle measured by the Planck Collaboration, we obtain Ωm=0.2724±0.0047, and h+0.020⋅∑mv=0.7038±0.0060, assuming flat space and a cosmological constant. We combine this result with the 2018 Planck “TT, TE, EE + lowE + lensing” analysis, and update a study of ∑mv with new direct measurements of σ8, and obtain ∑mv=0.27±0.08 eV assuming three nearly degenerate neutrino eigenstates. Measurements are consistent with Ωk=0, and Ωde(a)=ΩΛ constant.展开更多
The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal ...The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal space-time constant, besides having a finite speed constant (speed of light in vacuum c). A finite universal age constant b is introduced. Namely, this paper shows that the changes in the Earth’s anomalistic year duration over time support the hypothesis of the age of the universe correlating with a maximum number of orbital revolutions constant. Neglecting the gravitational influence of other cosmological entities in the proximity of the Earth, the constant maximum number of revolutions is herewith determined solely by the Earth’s orbital revolutions around the Sun. The value of the universal age constant b is calculated to be around 13.8 billion orbital revolutions, derived out of an equation related to the changes in the Earth’s anomalistic year duration over time and the so-called Hubble tension. The above-mentioned calculated value b correlates well with the best fit to measured data of the cosmic microwave background radiation (CMBR) by the Planck spacecraft, the age of the observed universe is measured to be approximately 13.787 ± 0.020 billion years (2018 final data release). Developing a theory with this 2<sup>nd</sup> universal space-time constant b, being covariant with respect to the Lorentz transformations when time spans are large, gives results such as: A confirmation of the measured CMBR value of 13.787 ± 0.020 billion years. Correlating well with the observed expansion rate of the universe (dark energy). The universe’s expansion accelerating over the last four to five billion years.展开更多
We develop methods to extract key dark energy information from cosmic distance measurements including the BAO scales and supernova(SN) luminosity distances.Demonstrated using simulated data sets of the complete DESI,L...We develop methods to extract key dark energy information from cosmic distance measurements including the BAO scales and supernova(SN) luminosity distances.Demonstrated using simulated data sets of the complete DESI,LSST and Roman surveys designed for BAO and SN distance measurements,we show that using our method,the dynamical behavior of the energy,pressure,equation of state(with its time derivative) of dark energy and the cosmic deceleration function can all be accurately recovered from high-quality data,which allows for robust diagnostic tests for dark energy models.展开更多
This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, ev...This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, evolution, structure, ultimate fate, and primary parameters of the World. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the world and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;gamma-ray background and cosmic neutrino background;macrostructure of the world and macroobjects structure. Additionally, the model makes predictions pertaining to masses of dark matter particles, photons, and neutrinos, proposes new types of particle interactions (Super Weak and Extremely Weak), and shows inter-connectivity of primary cosmological parameters of the world and the rise of the solar luminosity during the last 4.6 Byr. The model proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values.展开更多
Dirac’s themes were the unity and beauty of Nature. He identified three revolutions in modern physics: Relativity, Quantum Mechanics and Cosmology. In his opinion: “<i>The new cosmology will probably turn out ...Dirac’s themes were the unity and beauty of Nature. He identified three revolutions in modern physics: Relativity, Quantum Mechanics and Cosmology. In his opinion: “<i>The new cosmology will probably turn out to be philosophically even more revolutionary than relativity or the quantum theory, perhaps looking forward to the current bonanza in cosmology, where precise observations on some of the most distant objects in the universe are shedding light on the nature of reality, on the nature of matter and on the most advanced quantum theories</i>” [Farmelo, G. (2009) The Strangest Man. The Hidden Life of Paul Dirac, Mystic of the Atom. Basic Books, Britain, 661 p]. In 1937, Paul Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”;and later added the notion of continuous creation of Matter in the World. The developed Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing a different mechanism of matter creation. In this paper, we show that WUM is a natural continuation of Classical Physics and it can already serve as a basis for a New Cosmology proposed by Paul Dirac.展开更多
The main objective of this paper is to discuss the Evolution of a 3D Finite World (that is a Hypersphere of a 4D Nucleus of the World) from the Beginning up to the present Epoch in frames of World-Universe Model (WUM)...The main objective of this paper is to discuss the Evolution of a 3D Finite World (that is a Hypersphere of a 4D Nucleus of the World) from the Beginning up to the present Epoch in frames of World-Universe Model (WUM). WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM introduces Dark Epoch (spanning from the Beginning of the World for 0.45 billion years) when only Dark Matter (DM) Macroobjects (MOs) existed, and Luminous Epoch (ever since for 13.77 billion years) when Luminous MOs emerged due to Rotational Fission of Overspinning DM Superclusters’ Cores and self-annihilation of Dark Matter Particles (DMPs). WUM envisions that DM is created by the Universe in the 4D Nucleus of the World. Dark Matter Particles (DMPs) carry new DM into the 3D Hypersphere World. Luminous Matter is a byproduct of DMPs self-annihilation. By analogy with 3D ball, which has two-dimensional sphere surface (that has surface energy), we can imagine that the 3D Hypersphere World has a “Surface Energy” of the 4D Nucleus. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: <b>Angular Momentum problem</b> in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;<b>Fermi Bubbles</b>—two large structures in gamma-rays and X-rays above and below Galactic center;<b>Missing Baryon problem</b> related to the fact that the observed amount of baryonic matter did not match theoretical predictions. WUM reveals <b>Inter-Connectivity of Primary Cosmological Parameters</b> and calculates their values, which are in good agreement with the latest results of their measurements. In 2013, WUM predicted the values of the following Cosmological parameters: gravitational, concentration of intergalactic plasma, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. “<i>The Discovery of a Supermassive Compact Object at the Centre of Our Galaxy</i>” (Nobel Prize in Physics 2020) made by Prof. R. Genzel and A. Ghez is a confirmation of one of the most important predictions of WUM in 2013: “<i>Macroobjects of the World have cores made up of the discussed DM particles. Other particles, including DM and baryonic matter, form shells surrounding the cores</i>”.展开更多
This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these re...This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these results into a single coherent picture in frames of the developed Hypersphere World-Universe Model (WUM). The Model proposes 5 types of Dark Matter particles and predicts their masses;models the origin, evolution, and structure of the World and Macroobjects;provides a mathematical framework that ties together a number of Fundamental constants and allows for direct calculation of their values.展开更多
The Hypersphere World-Universe Model (WUM) provides a mathematical framework that allows calculating the primary cosmological parameters of the World which are in good agreement with the most recent measurements and o...The Hypersphere World-Universe Model (WUM) provides a mathematical framework that allows calculating the primary cosmological parameters of the World which are in good agreement with the most recent measurements and observations. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the World and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;the concentration of intergalactic plasma and time delay of Fast Radio Bursts. Additionally, the model predicts masses of dark matter particles, photons, and neutrinos;proposes new types of particle interactions (Super Weak and Extremely Weak);shows inter-connectivity of primary cosmological parameters of the World. WUM proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values. This paper is the summary of the mathematical results obtained in [1]-[4].展开更多
5D World-Universe Model is based on the decisive role of the Medium of the World composed of massive particles: protons, electrons, photons, neutrinos, and dark matter particles. In this manuscript we discuss differen...5D World-Universe Model is based on the decisive role of the Medium of the World composed of massive particles: protons, electrons, photons, neutrinos, and dark matter particles. In this manuscript we discuss different aspects of the gravitation: measured values of the Newtonian parameter of Gravitation and different Gravitational effects (gravitational lensing, cosmological redshift, gravitational deflection of light and gravitational refraction, proposed in the present paper). We show inter-connectivity of all cosmological parameters and provide a mathematical framework that allows direct calculation of them based on the value of the gravitational parameter. We analyze the difference between Electromagnetism and Gravitoelectromagnetism and make a conclusion about the mandatory existence of the Medium of the World. This paper aligns the World-Universe Model with the Le Sage’s theory of gravitation and makes a deduction on Gravity, Space and Time be emergent phenomena.展开更多
In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Pr...In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Primary Cosmological parameters of the World: Gravitation parameter, Hubble’s parameter, Age of the World, Temperature of the Microwave Background Radiation, and the concentration of Intergalactic plasma. Based on the inter-connectivity of these parameters, WUM solved the Missing Baryon problem and predicted the values of the following Cosmological parameters: gravitation G, concentration of Intergalactic plasma, relative energy density of protons in the Medium, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. Between 2013 and 2018, the relative standard uncertainty of G measurements decreased x6. The set of values obtained by WUM was recommended for consideration in CODATA Recommended Values of the Fundamental Physical Constants 2014.展开更多
This manuscript provides a comparison of the Hypersphere World-Universe Model (WUM) with the prevailing Big Bang Model (BBM) of the Standard Cosmology. The performed analysis of BBM shows that the Four Pillars of the ...This manuscript provides a comparison of the Hypersphere World-Universe Model (WUM) with the prevailing Big Bang Model (BBM) of the Standard Cosmology. The performed analysis of BBM shows that the Four Pillars of the Standard Cosmology are model-dependent and not strong enough to support the model. The angular momentum problem is one of the most critical problems in BBM. Standard Cosmology cannot explain how Galaxies and Extra Solar systems obtained their substantial orbital and rotational angular momenta, and why the orbital momentum of Jupiter is considerably larger than the rotational momentum of the Sun. WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM discusses in detail the Beginning of the World. The Model introduces Dark Epoch (spanning from the Beginning of the World for 0.4 billion years) when only Dark Matter Particles (DMPs) existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in Standard Cosmology is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning Dark Matter (DM) Supercluster’s Cores. WUM envisions Matter carried from the Universe into the World from the fourth spatial dimension by DMPs. Ordinary Matter is a byproduct of DM annihilation. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Diversity of Gravitationally-Rounded Objects in Solar system;some problems in Solar and Geophysics [1]. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.展开更多
The cross-correlation between the high-redshift 21 cm background and the Soft X-ray Background (SXB) of the Universe may provide an additional probe of the Epoch of Reionization. Here we use semi-numerical simulatio...The cross-correlation between the high-redshift 21 cm background and the Soft X-ray Background (SXB) of the Universe may provide an additional probe of the Epoch of Reionization. Here we use semi-numerical simulations to create 21 cm and soft X-ray intensity maps and construct their cross power spectra. Our results indicate that the cross power spectra are sensitive to the thermal and ionizing states of the intergalactic medium (IGM). The 21 cm background correlates positively to the SXB on large scales during the early stages of the reionization. However as the reionization develops, these two back- grounds turn out to be anti-correlated with each other when more than - 15% of the IGM is ionized in a warm reionization scenario. The anti-correlated power reaches its maximum when the neutral fraction declines to 0.2-0.5. Hence, the trough in the cross power spectrum might be a useful tool for tracing the growth of HII regions during the middle and late stages of the reionization. We estimate the detectability of the cross power spectrum based on the abilities of the Square Kilometre Array and the Wide Field X-ray Telescope (WFXT), and find that to detect the cross power spectrum, the pixel noise of X-ray images has to be at least 4 orders of magnitude lower than that of the WFXT deep survey.展开更多
Hypersphere World-Universe Model (WUM) is, in fact, a Paradigm Shift in Cosmology [1]. In this paper, we provide seven Pillars of WUM: Medium of the World;Inter-Connectivity of Primary Cosmological Parameters;Creation...Hypersphere World-Universe Model (WUM) is, in fact, a Paradigm Shift in Cosmology [1]. In this paper, we provide seven Pillars of WUM: Medium of the World;Inter-Connectivity of Primary Cosmological Parameters;Creation of Matter;Multicomponent Dark Matter;Macroobjects;Volcanic Rotational Fission;Dark Matter Reactors. We describe the evolution of the World from the Beginning up to the birth of the Solar System and discuss the condition of the Early Earth before the beginning of life on it.展开更多
We investigate large-angle scale temperature anisotropy in the Cosmic Microwave Background (CMB) with the Wilkinson Microwave Anisotropy Probe (WMAP) data and model the large-angle anomalies as the effect of the C...We investigate large-angle scale temperature anisotropy in the Cosmic Microwave Background (CMB) with the Wilkinson Microwave Anisotropy Probe (WMAP) data and model the large-angle anomalies as the effect of the CMB quadrupole anisotropies caused by the local density inhomogeneities. The quadrupole caused by the local density inhomogeneities is different from the special relativity kinematic quadrupole. If the observer inhabits a strong inhomogeneous region, the lo- cal quadrupole should not be neglected. We calculate such local quadrupole under the assumption that there is a huge density fluctuation field in the direction (284°, 74°), where the density fluctuation is 10-3, and its center is - 112 h-1 Mpc away from us. After removing such mock signals from WMAP data, the power in the quadrupole, C2, increases from the range (200 - 260 μK2) to - 1000 μK2. The quantity S, which is used to estimate the alignment between the quadrupole and the octopole, decreases from (0.7 - 0.74) to (0.31 - 0.37), while the model predicts that C2 = 1071.5 μK2, and S = 0.412. So our local density inhomogeneity model can, in part, explain the WMAP low-l anomalies.展开更多
Recently BICEP2 collaboration has announced the detection of the primordial gravitational waves at high confidence level. In light of the results of B-modes power spectrum from BICEP2 and using the based ACDM, a const...Recently BICEP2 collaboration has announced the detection of the primordial gravitational waves at high confidence level. In light of the results of B-modes power spectrum from BICEP2 and using the based ACDM, a constraint on the tensor-to-scalar ratio r = 0.20-0.05+0.07 (68% C.L.) can be obtained, however, this result is in apparent tension with the limit on standard inflation models from the recent PLANCK measurement, r 〈 0.11 (95% C.L.). Herein we review the recent progress on the cosmological studies after BICEP2 and discuss on different ways of reconciling the tension between PLANCK and BICEP2 data. We will discuss possible modifications on the standard cosmological model, such as including the running of scalar spectral index or other cosmological parameters correlated with inflationary cosmological parameters, or tilting the primordial power spectrum at large scales by introducing a cut off which can be predicted by bouncing cosmology. We will also comment on another possibility of generating extra B-modes of CMB polarization, namely by a non-zero polarization rotation angle during its transferring from the last scattering surface.展开更多
基金partially supported by a grant from the Research Grant Councilof the Hong Kong Special Administrative Region,China(Project No.400910)the support of a postdoctoral fellowship by The Chinese University of Hong Kong
文摘One of the main goals of modern cosmic microwave background (CMB) missions is to measure the tensor-to-scalar ratio r accurately to constrain inflation models. Due to ignorance about the reionization history Xe (z), this analysis is usu- ally done by assuming an instantaneous reionization Xe (z) which, however, can bias the best-fit value of r. Moreover, due to the strong mixing of B-mode and E-mode polarizations in cut-sky measurements, multiplying the sky coverage fraction fsky by the full-sky likelihood would not give satisfactory results. In this work, we forecast constraints on r for the Planck mission taking into account the general reionization scenario and cut-sky effects. Our results show that by applying an N-point interpo- lation analysis to the reionization history, the bias induced by the assumption of in- stantaneous reionization is removed and the value of r is constrained within 5% error level, if the true value of r is greater than about 0.1.
文摘From Baryon Acoustic Oscillation measurements with Sloan Digital Sky Survey SDSS DR14 galaxies, and the acoustic horizon angle measured by the Planck Collaboration, we obtain Ωm=0.2724±0.0047, and h+0.020⋅∑mv=0.7038±0.0060, assuming flat space and a cosmological constant. We combine this result with the 2018 Planck “TT, TE, EE + lowE + lensing” analysis, and update a study of ∑mv with new direct measurements of σ8, and obtain ∑mv=0.27±0.08 eV assuming three nearly degenerate neutrino eigenstates. Measurements are consistent with Ωk=0, and Ωde(a)=ΩΛ constant.
文摘The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal space-time constant, besides having a finite speed constant (speed of light in vacuum c). A finite universal age constant b is introduced. Namely, this paper shows that the changes in the Earth’s anomalistic year duration over time support the hypothesis of the age of the universe correlating with a maximum number of orbital revolutions constant. Neglecting the gravitational influence of other cosmological entities in the proximity of the Earth, the constant maximum number of revolutions is herewith determined solely by the Earth’s orbital revolutions around the Sun. The value of the universal age constant b is calculated to be around 13.8 billion orbital revolutions, derived out of an equation related to the changes in the Earth’s anomalistic year duration over time and the so-called Hubble tension. The above-mentioned calculated value b correlates well with the best fit to measured data of the cosmic microwave background radiation (CMBR) by the Planck spacecraft, the age of the observed universe is measured to be approximately 13.787 ± 0.020 billion years (2018 final data release). Developing a theory with this 2<sup>nd</sup> universal space-time constant b, being covariant with respect to the Lorentz transformations when time spans are large, gives results such as: A confirmation of the measured CMBR value of 13.787 ± 0.020 billion years. Correlating well with the observed expansion rate of the universe (dark energy). The universe’s expansion accelerating over the last four to five billion years.
基金supported by the National Key R&D Program of China(2023YFA1607800,2023YFA1607803)the National Natural Science Foundation of China (NSFC,Grant Nos.11925303 and11890691)+3 种基金supported by the National Natural Science Foundation of China (NSFC,Grant No.12203062)by a CAS Project for Young Scientists in Basic Research (No.YSBR-092)supported by science research grants from the China Manned Space Project with No.CMS-CSST-2021-B01supported by the New Cornerstone Science Foundation through the XPLORER prize。
文摘We develop methods to extract key dark energy information from cosmic distance measurements including the BAO scales and supernova(SN) luminosity distances.Demonstrated using simulated data sets of the complete DESI,LSST and Roman surveys designed for BAO and SN distance measurements,we show that using our method,the dynamical behavior of the energy,pressure,equation of state(with its time derivative) of dark energy and the cosmic deceleration function can all be accurately recovered from high-quality data,which allows for robust diagnostic tests for dark energy models.
文摘This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, evolution, structure, ultimate fate, and primary parameters of the World. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the world and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;gamma-ray background and cosmic neutrino background;macrostructure of the world and macroobjects structure. Additionally, the model makes predictions pertaining to masses of dark matter particles, photons, and neutrinos, proposes new types of particle interactions (Super Weak and Extremely Weak), and shows inter-connectivity of primary cosmological parameters of the world and the rise of the solar luminosity during the last 4.6 Byr. The model proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values.
文摘Dirac’s themes were the unity and beauty of Nature. He identified three revolutions in modern physics: Relativity, Quantum Mechanics and Cosmology. In his opinion: “<i>The new cosmology will probably turn out to be philosophically even more revolutionary than relativity or the quantum theory, perhaps looking forward to the current bonanza in cosmology, where precise observations on some of the most distant objects in the universe are shedding light on the nature of reality, on the nature of matter and on the most advanced quantum theories</i>” [Farmelo, G. (2009) The Strangest Man. The Hidden Life of Paul Dirac, Mystic of the Atom. Basic Books, Britain, 661 p]. In 1937, Paul Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”;and later added the notion of continuous creation of Matter in the World. The developed Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing a different mechanism of matter creation. In this paper, we show that WUM is a natural continuation of Classical Physics and it can already serve as a basis for a New Cosmology proposed by Paul Dirac.
文摘The main objective of this paper is to discuss the Evolution of a 3D Finite World (that is a Hypersphere of a 4D Nucleus of the World) from the Beginning up to the present Epoch in frames of World-Universe Model (WUM). WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM introduces Dark Epoch (spanning from the Beginning of the World for 0.45 billion years) when only Dark Matter (DM) Macroobjects (MOs) existed, and Luminous Epoch (ever since for 13.77 billion years) when Luminous MOs emerged due to Rotational Fission of Overspinning DM Superclusters’ Cores and self-annihilation of Dark Matter Particles (DMPs). WUM envisions that DM is created by the Universe in the 4D Nucleus of the World. Dark Matter Particles (DMPs) carry new DM into the 3D Hypersphere World. Luminous Matter is a byproduct of DMPs self-annihilation. By analogy with 3D ball, which has two-dimensional sphere surface (that has surface energy), we can imagine that the 3D Hypersphere World has a “Surface Energy” of the 4D Nucleus. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: <b>Angular Momentum problem</b> in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;<b>Fermi Bubbles</b>—two large structures in gamma-rays and X-rays above and below Galactic center;<b>Missing Baryon problem</b> related to the fact that the observed amount of baryonic matter did not match theoretical predictions. WUM reveals <b>Inter-Connectivity of Primary Cosmological Parameters</b> and calculates their values, which are in good agreement with the latest results of their measurements. In 2013, WUM predicted the values of the following Cosmological parameters: gravitational, concentration of intergalactic plasma, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. “<i>The Discovery of a Supermassive Compact Object at the Centre of Our Galaxy</i>” (Nobel Prize in Physics 2020) made by Prof. R. Genzel and A. Ghez is a confirmation of one of the most important predictions of WUM in 2013: “<i>Macroobjects of the World have cores made up of the discussed DM particles. Other particles, including DM and baryonic matter, form shells surrounding the cores</i>”.
文摘This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these results into a single coherent picture in frames of the developed Hypersphere World-Universe Model (WUM). The Model proposes 5 types of Dark Matter particles and predicts their masses;models the origin, evolution, and structure of the World and Macroobjects;provides a mathematical framework that ties together a number of Fundamental constants and allows for direct calculation of their values.
文摘The Hypersphere World-Universe Model (WUM) provides a mathematical framework that allows calculating the primary cosmological parameters of the World which are in good agreement with the most recent measurements and observations. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the World and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;the concentration of intergalactic plasma and time delay of Fast Radio Bursts. Additionally, the model predicts masses of dark matter particles, photons, and neutrinos;proposes new types of particle interactions (Super Weak and Extremely Weak);shows inter-connectivity of primary cosmological parameters of the World. WUM proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values. This paper is the summary of the mathematical results obtained in [1]-[4].
文摘5D World-Universe Model is based on the decisive role of the Medium of the World composed of massive particles: protons, electrons, photons, neutrinos, and dark matter particles. In this manuscript we discuss different aspects of the gravitation: measured values of the Newtonian parameter of Gravitation and different Gravitational effects (gravitational lensing, cosmological redshift, gravitational deflection of light and gravitational refraction, proposed in the present paper). We show inter-connectivity of all cosmological parameters and provide a mathematical framework that allows direct calculation of them based on the value of the gravitational parameter. We analyze the difference between Electromagnetism and Gravitoelectromagnetism and make a conclusion about the mandatory existence of the Medium of the World. This paper aligns the World-Universe Model with the Le Sage’s theory of gravitation and makes a deduction on Gravity, Space and Time be emergent phenomena.
文摘In 2013, World-Universe Model (WUM) proposed a principally different way to solve the problem of Newtonian Constant of Gravitation measurement precision. WUM revealed a self-consistent set of time-varying values of Primary Cosmological parameters of the World: Gravitation parameter, Hubble’s parameter, Age of the World, Temperature of the Microwave Background Radiation, and the concentration of Intergalactic plasma. Based on the inter-connectivity of these parameters, WUM solved the Missing Baryon problem and predicted the values of the following Cosmological parameters: gravitation G, concentration of Intergalactic plasma, relative energy density of protons in the Medium, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. Between 2013 and 2018, the relative standard uncertainty of G measurements decreased x6. The set of values obtained by WUM was recommended for consideration in CODATA Recommended Values of the Fundamental Physical Constants 2014.
文摘This manuscript provides a comparison of the Hypersphere World-Universe Model (WUM) with the prevailing Big Bang Model (BBM) of the Standard Cosmology. The performed analysis of BBM shows that the Four Pillars of the Standard Cosmology are model-dependent and not strong enough to support the model. The angular momentum problem is one of the most critical problems in BBM. Standard Cosmology cannot explain how Galaxies and Extra Solar systems obtained their substantial orbital and rotational angular momenta, and why the orbital momentum of Jupiter is considerably larger than the rotational momentum of the Sun. WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM discusses in detail the Beginning of the World. The Model introduces Dark Epoch (spanning from the Beginning of the World for 0.4 billion years) when only Dark Matter Particles (DMPs) existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in Standard Cosmology is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning Dark Matter (DM) Supercluster’s Cores. WUM envisions Matter carried from the Universe into the World from the fourth spatial dimension by DMPs. Ordinary Matter is a byproduct of DM annihilation. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Diversity of Gravitationally-Rounded Objects in Solar system;some problems in Solar and Geophysics [1]. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.
基金supported by the National Natural Science Foundation of China(Grant Nos.11473031,11261140641 and 11173028)the 973 Program(Grant No.2013CB837900)
文摘The cross-correlation between the high-redshift 21 cm background and the Soft X-ray Background (SXB) of the Universe may provide an additional probe of the Epoch of Reionization. Here we use semi-numerical simulations to create 21 cm and soft X-ray intensity maps and construct their cross power spectra. Our results indicate that the cross power spectra are sensitive to the thermal and ionizing states of the intergalactic medium (IGM). The 21 cm background correlates positively to the SXB on large scales during the early stages of the reionization. However as the reionization develops, these two back- grounds turn out to be anti-correlated with each other when more than - 15% of the IGM is ionized in a warm reionization scenario. The anti-correlated power reaches its maximum when the neutral fraction declines to 0.2-0.5. Hence, the trough in the cross power spectrum might be a useful tool for tracing the growth of HII regions during the middle and late stages of the reionization. We estimate the detectability of the cross power spectrum based on the abilities of the Square Kilometre Array and the Wide Field X-ray Telescope (WFXT), and find that to detect the cross power spectrum, the pixel noise of X-ray images has to be at least 4 orders of magnitude lower than that of the WFXT deep survey.
文摘Hypersphere World-Universe Model (WUM) is, in fact, a Paradigm Shift in Cosmology [1]. In this paper, we provide seven Pillars of WUM: Medium of the World;Inter-Connectivity of Primary Cosmological Parameters;Creation of Matter;Multicomponent Dark Matter;Macroobjects;Volcanic Rotational Fission;Dark Matter Reactors. We describe the evolution of the World from the Beginning up to the birth of the Solar System and discuss the condition of the Early Earth before the beginning of life on it.
文摘We investigate large-angle scale temperature anisotropy in the Cosmic Microwave Background (CMB) with the Wilkinson Microwave Anisotropy Probe (WMAP) data and model the large-angle anomalies as the effect of the CMB quadrupole anisotropies caused by the local density inhomogeneities. The quadrupole caused by the local density inhomogeneities is different from the special relativity kinematic quadrupole. If the observer inhabits a strong inhomogeneous region, the lo- cal quadrupole should not be neglected. We calculate such local quadrupole under the assumption that there is a huge density fluctuation field in the direction (284°, 74°), where the density fluctuation is 10-3, and its center is - 112 h-1 Mpc away from us. After removing such mock signals from WMAP data, the power in the quadrupole, C2, increases from the range (200 - 260 μK2) to - 1000 μK2. The quantity S, which is used to estimate the alignment between the quadrupole and the octopole, decreases from (0.7 - 0.74) to (0.31 - 0.37), while the model predicts that C2 = 1071.5 μK2, and S = 0.412. So our local density inhomogeneity model can, in part, explain the WMAP low-l anomalies.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11033005, 11322325, 11075074, 11121092, 11033005 and 11375202)the National Basic Research Program of China (Grant No. 2010CB83300)+1 种基金the Program for New Century Excellent Talents in Universitythe National Youth Thousand Talents Program and the Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences (Grant No. XDB09000000)
文摘Recently BICEP2 collaboration has announced the detection of the primordial gravitational waves at high confidence level. In light of the results of B-modes power spectrum from BICEP2 and using the based ACDM, a constraint on the tensor-to-scalar ratio r = 0.20-0.05+0.07 (68% C.L.) can be obtained, however, this result is in apparent tension with the limit on standard inflation models from the recent PLANCK measurement, r 〈 0.11 (95% C.L.). Herein we review the recent progress on the cosmological studies after BICEP2 and discuss on different ways of reconciling the tension between PLANCK and BICEP2 data. We will discuss possible modifications on the standard cosmological model, such as including the running of scalar spectral index or other cosmological parameters correlated with inflationary cosmological parameters, or tilting the primordial power spectrum at large scales by introducing a cut off which can be predicted by bouncing cosmology. We will also comment on another possibility of generating extra B-modes of CMB polarization, namely by a non-zero polarization rotation angle during its transferring from the last scattering surface.