Using the approximation of constant pressure, a thermodynamic identity for GR as given by Padmanabhan is applied to early universe graviton production. We build upon an earlier result in doing this calculation. Previo...Using the approximation of constant pressure, a thermodynamic identity for GR as given by Padmanabhan is applied to early universe graviton production. We build upon an earlier result in doing this calculation. Previously, we reviewed a relationship between the magnitude of an inflaton, the resultant potential, GW frequencies and also Gravitational waves, GW, wavelengths. The Non Linear Electrodynamics (NLED) approximation makes full use of the Camara et al. result about density and magnetic fields to ascertain when the density is positive or negative, meaning that at a given magnetic field strength, if one uses a relationship between density and pressure at the start of inflation one can link the magnetic field to pressure. From there an estimated initial temperature is calculated. This temperature scales down if the initial entropy grows.展开更多
文摘Using the approximation of constant pressure, a thermodynamic identity for GR as given by Padmanabhan is applied to early universe graviton production. We build upon an earlier result in doing this calculation. Previously, we reviewed a relationship between the magnitude of an inflaton, the resultant potential, GW frequencies and also Gravitational waves, GW, wavelengths. The Non Linear Electrodynamics (NLED) approximation makes full use of the Camara et al. result about density and magnetic fields to ascertain when the density is positive or negative, meaning that at a given magnetic field strength, if one uses a relationship between density and pressure at the start of inflation one can link the magnetic field to pressure. From there an estimated initial temperature is calculated. This temperature scales down if the initial entropy grows.