Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among...Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among these empirical equations, the CMB temperature (Tc) and gravitational constant (G) were calculated to be 2.726312 K and 6.673778 × 10−11 m3∙kg−1∙s−2, respectively. Every equation can be explained numerically in terms of the Compton length of an electron (λe), the Compton length of a proton (λp) and α. Furthermore, every equation can also be explained in terms of the Avogadro number and the number of electrons at 1 C. We show that every equation can be described in terms of the Planck constant. Then, the ratio of the gravitational force to the electric force can be uniquely determined with the assumption of minimum mass. In this report, we describe the algorithms used to explain these equations in detail. Thus, there are no dimension mismatch problems.展开更多
This paper shows how the Flat Space Cosmology model correlates the recom-bination epoch CMB temperature of 3000 K with a cosmological redshift of 1100. This proof is given in support of the recent publication that the...This paper shows how the Flat Space Cosmology model correlates the recom-bination epoch CMB temperature of 3000 K with a cosmological redshift of 1100. This proof is given in support of the recent publication that the Tatum and Seshavatharam Hubble temperature formulae can be derived using the Stephan-Boltzmann dispersion law. Thus, as explained herein, the era of high precision Planck scale quantum cosmology has arrived.展开更多
The purpose of this paper is to show how one can use the FSC model of gravitational entropy to calculate cosmic radiation temperature anisotropy for any past cosmic time t since the Planck scale. Cosmic entropy follow...The purpose of this paper is to show how one can use the FSC model of gravitational entropy to calculate cosmic radiation temperature anisotropy for any past cosmic time t since the Planck scale. Cosmic entropy follows the Bekenstein-Hawking definition, although in the correct-scaling form of, which scales 60.63 logs of 10 from the Planck scale. In the FSC model, cosmic radiation temperature anisotropy At = (t/to). The derived past anisotropy value can be compared to current co-moving anisotropy defined as unity (to/to). Calculated in this way, current gravitational entropy and temperature anisotropy have maximum values, and the earliest universe has the lowest entropy and temperature anisotropy values. This approach comports with the second law of thermodynamics and the theoretical basis of the Sachs-Wolfe effect, gravitational entropy as defined by Roger Penrose, and Erik Verlinde’s “emergent gravity” theory.展开更多
FSC is shown to be an excellent model of Penrose’s Weyl curvature hypothesis and his concept of gravitational entropy. The assumptions of FSC allow for the minimum entropy at the inception of the cosmic expansion and...FSC is shown to be an excellent model of Penrose’s Weyl curvature hypothesis and his concept of gravitational entropy. The assumptions of FSC allow for the minimum entropy at the inception of the cosmic expansion and rigorously define a cosmological arrow of time. This is in sharp contrast to inflationary models, which appear to violate the second law of thermodynamics within the early universe. Furthermore, by virtue of the same physical assumptions applying at any cosmic time t, the perpetually-flat FSC model predicts the degree of scale invariance observed in the CMB anisotropy pattern, without requiring an explosive and exceedingly brief inflationary epoch. Penrose’s concepts, as described in this paper, provide support for the idea that FSC models gravitational entropy and Verlinde’s emergent gravity theory.展开更多
The purpose of this paper is to show how the dark matter predictions of FSC differ with respect to the standard cosmology assertion of a universal dark matter-to-visible matter ratio of approximately 5.3-to-1. FSC pre...The purpose of this paper is to show how the dark matter predictions of FSC differ with respect to the standard cosmology assertion of a universal dark matter-to-visible matter ratio of approximately 5.3-to-1. FSC predicts the correct ratio to be approximately 9-to-1, based primarily on the universal observations of global spatial flatness in the context of general relativity. The FSC Friedmann equations incorporating a Lambda?Λ?cosmological term clearly indicate that a spatially flat universe must have equality of the positive curvature (matter mass-energy) and negative curvature (dark energy) density components. Thus, FSC predicts that observations of the Milky Way and the nearly co-moving galaxies within 100 million light years will prove the 5.3-to-1 ratio to be incorrect. The most recent galactic and perigalactic observations indicate a range of dark matter-to-visible matter ratios varying from essentially zero (NGC 1052-DF2) to approximately 23-to-1 (Milky Way). The latter ratio is simply astonishing and promises an exciting next few years for astrophysicists and cosmologists. Within the next few years, the mining of huge data bases (especially the Gaia catalogue and Hubble data) will resolve whether standard cosmology will need to change its current claims for the cosmic energy density partition to be more in line with FSC, or whether FSC is falsified. A prediction is that standard cosmology must eventually realize the necessity of resolving the tension between their flatness observations and their assertion of dark energy dominance. The author makes the further prediction that FSC will soon become the new paradigm in cosmology.展开更多
One of the main goals of modern cosmic microwave background (CMB) missions is to measure the tensor-to-scalar ratio r accurately to constrain inflation models. Due to ignorance about the reionization history Xe (z...One of the main goals of modern cosmic microwave background (CMB) missions is to measure the tensor-to-scalar ratio r accurately to constrain inflation models. Due to ignorance about the reionization history Xe (z), this analysis is usu- ally done by assuming an instantaneous reionization Xe (z) which, however, can bias the best-fit value of r. Moreover, due to the strong mixing of B-mode and E-mode polarizations in cut-sky measurements, multiplying the sky coverage fraction fsky by the full-sky likelihood would not give satisfactory results. In this work, we forecast constraints on r for the Planck mission taking into account the general reionization scenario and cut-sky effects. Our results show that by applying an N-point interpo- lation analysis to the reionization history, the bias induced by the assumption of in- stantaneous reionization is removed and the value of r is constrained within 5% error level, if the true value of r is greater than about 0.1.展开更多
To minimize instrumentally the induced systematic errors,cosmic microwave background(CMB)anisotropy experiments measure temperature differences across the sky using pairs of horn antennas, temperature map is recovered...To minimize instrumentally the induced systematic errors,cosmic microwave background(CMB)anisotropy experiments measure temperature differences across the sky using pairs of horn antennas, temperature map is recovered from temperature difference obtained in sky survey through a map-making procedure.To inspect and calibrate residual systematic errors in the recovered temperature maps is important as most previous studies of cosmology are based on these maps.By analyzing pixel-ring coupling and latitude dependence of CMB temperatures,we find notable systematic devia- tion from CMB Gaussianity in released Wilkinson Microwave Anisotropy Probe(WMAP)maps.The detected deviation cannot be explained by the best-fit LCDM cosmological model at a confidence level above 99%and cannot be ignored for a precision cosmology study.展开更多
The observed microwave background radiation (MBR) is commonly in- terpreted as the relic of an early hot universe, and its observed features (spectrum and anisotropy) are explained in terms of properties of the ea...The observed microwave background radiation (MBR) is commonly in- terpreted as the relic of an early hot universe, and its observed features (spectrum and anisotropy) are explained in terms of properties of the early universe. Here we describe a complementary, even possibly alternative, interpretation of MBR, first proposed in the early 20th century, and adapt it to modern observations. For example, the stellar Hipparcos data show that the energy density of starlight from the Milky Way, if suit- ably thermalized, yields a temperature of ~2.81 K. This and other arguments given here strongly suggest that the origin of MBR may lie, at least in a very large part, in re-radiation of thermalized galactic starlight. The strengths and weaknesses of this alternative radical explanation are discussed.展开更多
The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal ...The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal space-time constant, besides having a finite speed constant (speed of light in vacuum c). A finite universal age constant b is introduced. Namely, this paper shows that the changes in the Earth’s anomalistic year duration over time support the hypothesis of the age of the universe correlating with a maximum number of orbital revolutions constant. Neglecting the gravitational influence of other cosmological entities in the proximity of the Earth, the constant maximum number of revolutions is herewith determined solely by the Earth’s orbital revolutions around the Sun. The value of the universal age constant b is calculated to be around 13.8 billion orbital revolutions, derived out of an equation related to the changes in the Earth’s anomalistic year duration over time and the so-called Hubble tension. The above-mentioned calculated value b correlates well with the best fit to measured data of the cosmic microwave background radiation (CMBR) by the Planck spacecraft, the age of the observed universe is measured to be approximately 13.787 ± 0.020 billion years (2018 final data release). Developing a theory with this 2<sup>nd</sup> universal space-time constant b, being covariant with respect to the Lorentz transformations when time spans are large, gives results such as: A confirmation of the measured CMBR value of 13.787 ± 0.020 billion years. Correlating well with the observed expansion rate of the universe (dark energy). The universe’s expansion accelerating over the last four to five billion years.展开更多
In this paper, we have given some analysis from observations of type Ia supernovae (SNIa). We find that the average total observational error of SNIa is obviously greater than 0.55<sup>m</sup>. On the othe...In this paper, we have given some analysis from observations of type Ia supernovae (SNIa). We find that the average total observational error of SNIa is obviously greater than 0.55<sup>m</sup>. On the other hand, a popular view of circumstantial evidence for the accelerating universe comes from the comparison of theoretical models simulating the accelerating expansion of the universe with observations from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite deviating from the observed isotropic temperature of the Cosmic Microwave Background (CMB). Due to the fact that the velocity space is not isotropic, then the theoretical simulations are incredibly consistent with observations from the WMAP and Planck satellites. We conclude that the anisotropy of the velocity space will inevitably lead to an anisotropic distribution of the CMB temperature, and the above indirect evidence of the cosmic acceleration is inadequate and inappropriate.展开更多
Both the Wilkinson Microwave Anisotropy Probe (WMAP) and Planck missions have reported an extremely cold spot (CS) centered at Galactic coordinate (1 = 209°, b = -57°) in the cosmic microwave backgroun...Both the Wilkinson Microwave Anisotropy Probe (WMAP) and Planck missions have reported an extremely cold spot (CS) centered at Galactic coordinate (1 = 209°, b = -57°) in the cosmic microwave background map. We study the lo- cal non-Gaussianity of the CS by defining local Minkowski functionals. We find that the third Minkowski functional v2 is quite sensitive to the non-Gaussianity caused by the CS. Compared with random Gaussian simulations, the WMAP CS deviates from Gaussianity at more than a 99% confidence level with a scale of R - 10°. Meanwhile, we find that cosmic texture provides an excellent explanation for these anomalies re- lated to the WMAP CS, which could be further tested by future polarization data.展开更多
Abstract We use the recently released data of lookback time (LT)-redshift relation, the cosmic microwave background shift parameter and the baryon acoustic oscillation measurements to constrain cosmological paramete...Abstract We use the recently released data of lookback time (LT)-redshift relation, the cosmic microwave background shift parameter and the baryon acoustic oscillation measurements to constrain cosmological parameters of f(R) gravity in the Palatini formalism by considering the f(R) form of type(a)f(R) = R -β/Rn and (b)f(R) = R + αIn R - β. Under the assumption of a Friedmann-Robertson-Walker universe, we achieved the best fitting results of the free parameters (Ωm0, n) for (a) and (Ωm0, α) for (b). We find that current LT data can provide interesting and effective constraints on gravity models. Compared with other data, the LT constraints favor a smaller value of the non-relativistic matter energy density.展开更多
We investigate large-angle scale temperature anisotropy in the Cosmic Microwave Background (CMB) with the Wilkinson Microwave Anisotropy Probe (WMAP) data and model the large-angle anomalies as the effect of the C...We investigate large-angle scale temperature anisotropy in the Cosmic Microwave Background (CMB) with the Wilkinson Microwave Anisotropy Probe (WMAP) data and model the large-angle anomalies as the effect of the CMB quadrupole anisotropies caused by the local density inhomogeneities. The quadrupole caused by the local density inhomogeneities is different from the special relativity kinematic quadrupole. If the observer inhabits a strong inhomogeneous region, the lo- cal quadrupole should not be neglected. We calculate such local quadrupole under the assumption that there is a huge density fluctuation field in the direction (284°, 74°), where the density fluctuation is 10-3, and its center is - 112 h-1 Mpc away from us. After removing such mock signals from WMAP data, the power in the quadrupole, C2, increases from the range (200 - 260 μK2) to - 1000 μK2. The quantity S, which is used to estimate the alignment between the quadrupole and the octopole, decreases from (0.7 - 0.74) to (0.31 - 0.37), while the model predicts that C2 = 1071.5 μK2, and S = 0.412. So our local density inhomogeneity model can, in part, explain the WMAP low-l anomalies.展开更多
We study the local structure of Cosmic Microwave Background (CMB) temperature maps released by the Wilkinson Microwave Anisotropy Probe (WMAP) team, and find a new kind of structure, which can be described as foll...We study the local structure of Cosmic Microwave Background (CMB) temperature maps released by the Wilkinson Microwave Anisotropy Probe (WMAP) team, and find a new kind of structure, which can be described as follows: a peak (or valley) of average temperature is often followed by a peak of temperature fluctuation that is 4° away. This structure is important for the following reasons: both the well known cold spot detected by Cruz et al. and the hot spot detected by Vielva et al. with the same technology (the third spot in their article) have such structure; more spots that are similar to them can be found on CMB maps and they also tend to be significant cold/hot spots; if we change the 4° characteristic into an artificial one, such as 3° or 5°, there will be less "similar spots", and the temperature peaks or valleys will be less significant. The presented "sim- ilar spots" have passed a strict consistency test which requires them to be significant on at least three different CMB temperature maps. We hope that this article could arouse some interest in the relationship of average temperature with temperature fluctuation in local areas; meanwhile, we are also trying to find an explanation for it which might be important to CMB observation and theory.展开更多
文摘Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among these empirical equations, the CMB temperature (Tc) and gravitational constant (G) were calculated to be 2.726312 K and 6.673778 × 10−11 m3∙kg−1∙s−2, respectively. Every equation can be explained numerically in terms of the Compton length of an electron (λe), the Compton length of a proton (λp) and α. Furthermore, every equation can also be explained in terms of the Avogadro number and the number of electrons at 1 C. We show that every equation can be described in terms of the Planck constant. Then, the ratio of the gravitational force to the electric force can be uniquely determined with the assumption of minimum mass. In this report, we describe the algorithms used to explain these equations in detail. Thus, there are no dimension mismatch problems.
文摘This paper shows how the Flat Space Cosmology model correlates the recom-bination epoch CMB temperature of 3000 K with a cosmological redshift of 1100. This proof is given in support of the recent publication that the Tatum and Seshavatharam Hubble temperature formulae can be derived using the Stephan-Boltzmann dispersion law. Thus, as explained herein, the era of high precision Planck scale quantum cosmology has arrived.
文摘The purpose of this paper is to show how one can use the FSC model of gravitational entropy to calculate cosmic radiation temperature anisotropy for any past cosmic time t since the Planck scale. Cosmic entropy follows the Bekenstein-Hawking definition, although in the correct-scaling form of, which scales 60.63 logs of 10 from the Planck scale. In the FSC model, cosmic radiation temperature anisotropy At = (t/to). The derived past anisotropy value can be compared to current co-moving anisotropy defined as unity (to/to). Calculated in this way, current gravitational entropy and temperature anisotropy have maximum values, and the earliest universe has the lowest entropy and temperature anisotropy values. This approach comports with the second law of thermodynamics and the theoretical basis of the Sachs-Wolfe effect, gravitational entropy as defined by Roger Penrose, and Erik Verlinde’s “emergent gravity” theory.
文摘FSC is shown to be an excellent model of Penrose’s Weyl curvature hypothesis and his concept of gravitational entropy. The assumptions of FSC allow for the minimum entropy at the inception of the cosmic expansion and rigorously define a cosmological arrow of time. This is in sharp contrast to inflationary models, which appear to violate the second law of thermodynamics within the early universe. Furthermore, by virtue of the same physical assumptions applying at any cosmic time t, the perpetually-flat FSC model predicts the degree of scale invariance observed in the CMB anisotropy pattern, without requiring an explosive and exceedingly brief inflationary epoch. Penrose’s concepts, as described in this paper, provide support for the idea that FSC models gravitational entropy and Verlinde’s emergent gravity theory.
文摘The purpose of this paper is to show how the dark matter predictions of FSC differ with respect to the standard cosmology assertion of a universal dark matter-to-visible matter ratio of approximately 5.3-to-1. FSC predicts the correct ratio to be approximately 9-to-1, based primarily on the universal observations of global spatial flatness in the context of general relativity. The FSC Friedmann equations incorporating a Lambda?Λ?cosmological term clearly indicate that a spatially flat universe must have equality of the positive curvature (matter mass-energy) and negative curvature (dark energy) density components. Thus, FSC predicts that observations of the Milky Way and the nearly co-moving galaxies within 100 million light years will prove the 5.3-to-1 ratio to be incorrect. The most recent galactic and perigalactic observations indicate a range of dark matter-to-visible matter ratios varying from essentially zero (NGC 1052-DF2) to approximately 23-to-1 (Milky Way). The latter ratio is simply astonishing and promises an exciting next few years for astrophysicists and cosmologists. Within the next few years, the mining of huge data bases (especially the Gaia catalogue and Hubble data) will resolve whether standard cosmology will need to change its current claims for the cosmic energy density partition to be more in line with FSC, or whether FSC is falsified. A prediction is that standard cosmology must eventually realize the necessity of resolving the tension between their flatness observations and their assertion of dark energy dominance. The author makes the further prediction that FSC will soon become the new paradigm in cosmology.
基金partially supported by a grant from the Research Grant Councilof the Hong Kong Special Administrative Region,China(Project No.400910)the support of a postdoctoral fellowship by The Chinese University of Hong Kong
文摘One of the main goals of modern cosmic microwave background (CMB) missions is to measure the tensor-to-scalar ratio r accurately to constrain inflation models. Due to ignorance about the reionization history Xe (z), this analysis is usu- ally done by assuming an instantaneous reionization Xe (z) which, however, can bias the best-fit value of r. Moreover, due to the strong mixing of B-mode and E-mode polarizations in cut-sky measurements, multiplying the sky coverage fraction fsky by the full-sky likelihood would not give satisfactory results. In this work, we forecast constraints on r for the Planck mission taking into account the general reionization scenario and cut-sky effects. Our results show that by applying an N-point interpo- lation analysis to the reionization history, the bias induced by the assumption of in- stantaneous reionization is removed and the value of r is constrained within 5% error level, if the true value of r is greater than about 0.1.
基金Supported by the National Natural Science Foundation of China(Grant No.10533020)the National Basic Research Program of China(Grant No.2009CB-824800)the Directional Research Project of the Chinese Academy of Sciences(Grant No.KJCX2-YW-T03)
文摘To minimize instrumentally the induced systematic errors,cosmic microwave background(CMB)anisotropy experiments measure temperature differences across the sky using pairs of horn antennas, temperature map is recovered from temperature difference obtained in sky survey through a map-making procedure.To inspect and calibrate residual systematic errors in the recovered temperature maps is important as most previous studies of cosmology are based on these maps.By analyzing pixel-ring coupling and latitude dependence of CMB temperatures,we find notable systematic devia- tion from CMB Gaussianity in released Wilkinson Microwave Anisotropy Probe(WMAP)maps.The detected deviation cannot be explained by the best-fit LCDM cosmological model at a confidence level above 99%and cannot be ignored for a precision cosmology study.
基金supported in part by the Perimeter Institute for Theoretical PhysicsResearch at the Perimeter Institute is supported by the Government of Canada through Industry Canadaby the Province of Ontario through the Ministry of Research and Innovation
文摘The observed microwave background radiation (MBR) is commonly in- terpreted as the relic of an early hot universe, and its observed features (spectrum and anisotropy) are explained in terms of properties of the early universe. Here we describe a complementary, even possibly alternative, interpretation of MBR, first proposed in the early 20th century, and adapt it to modern observations. For example, the stellar Hipparcos data show that the energy density of starlight from the Milky Way, if suit- ably thermalized, yields a temperature of ~2.81 K. This and other arguments given here strongly suggest that the origin of MBR may lie, at least in a very large part, in re-radiation of thermalized galactic starlight. The strengths and weaknesses of this alternative radical explanation are discussed.
文摘The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal space-time constant, besides having a finite speed constant (speed of light in vacuum c). A finite universal age constant b is introduced. Namely, this paper shows that the changes in the Earth’s anomalistic year duration over time support the hypothesis of the age of the universe correlating with a maximum number of orbital revolutions constant. Neglecting the gravitational influence of other cosmological entities in the proximity of the Earth, the constant maximum number of revolutions is herewith determined solely by the Earth’s orbital revolutions around the Sun. The value of the universal age constant b is calculated to be around 13.8 billion orbital revolutions, derived out of an equation related to the changes in the Earth’s anomalistic year duration over time and the so-called Hubble tension. The above-mentioned calculated value b correlates well with the best fit to measured data of the cosmic microwave background radiation (CMBR) by the Planck spacecraft, the age of the observed universe is measured to be approximately 13.787 ± 0.020 billion years (2018 final data release). Developing a theory with this 2<sup>nd</sup> universal space-time constant b, being covariant with respect to the Lorentz transformations when time spans are large, gives results such as: A confirmation of the measured CMBR value of 13.787 ± 0.020 billion years. Correlating well with the observed expansion rate of the universe (dark energy). The universe’s expansion accelerating over the last four to five billion years.
文摘In this paper, we have given some analysis from observations of type Ia supernovae (SNIa). We find that the average total observational error of SNIa is obviously greater than 0.55<sup>m</sup>. On the other hand, a popular view of circumstantial evidence for the accelerating universe comes from the comparison of theoretical models simulating the accelerating expansion of the universe with observations from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite deviating from the observed isotropic temperature of the Cosmic Microwave Background (CMB). Due to the fact that the velocity space is not isotropic, then the theoretical simulations are incredibly consistent with observations from the WMAP and Planck satellites. We conclude that the anisotropy of the velocity space will inevitably lead to an anisotropic distribution of the CMB temperature, and the above indirect evidence of the cosmic acceleration is inadequate and inappropriate.
基金Supported by the National Natural Science Foundation of China
文摘Both the Wilkinson Microwave Anisotropy Probe (WMAP) and Planck missions have reported an extremely cold spot (CS) centered at Galactic coordinate (1 = 209°, b = -57°) in the cosmic microwave background map. We study the lo- cal non-Gaussianity of the CS by defining local Minkowski functionals. We find that the third Minkowski functional v2 is quite sensitive to the non-Gaussianity caused by the CS. Compared with random Gaussian simulations, the WMAP CS deviates from Gaussianity at more than a 99% confidence level with a scale of R - 10°. Meanwhile, we find that cosmic texture provides an excellent explanation for these anomalies re- lated to the WMAP CS, which could be further tested by future polarization data.
基金supported by the National Natural Science Foundation of China(Grant Nos.10773002 and 10875012)supported by the Fundamental Research Funds for the Central Universities(Grant No.105116)
文摘Abstract We use the recently released data of lookback time (LT)-redshift relation, the cosmic microwave background shift parameter and the baryon acoustic oscillation measurements to constrain cosmological parameters of f(R) gravity in the Palatini formalism by considering the f(R) form of type(a)f(R) = R -β/Rn and (b)f(R) = R + αIn R - β. Under the assumption of a Friedmann-Robertson-Walker universe, we achieved the best fitting results of the free parameters (Ωm0, n) for (a) and (Ωm0, α) for (b). We find that current LT data can provide interesting and effective constraints on gravity models. Compared with other data, the LT constraints favor a smaller value of the non-relativistic matter energy density.
文摘We investigate large-angle scale temperature anisotropy in the Cosmic Microwave Background (CMB) with the Wilkinson Microwave Anisotropy Probe (WMAP) data and model the large-angle anomalies as the effect of the CMB quadrupole anisotropies caused by the local density inhomogeneities. The quadrupole caused by the local density inhomogeneities is different from the special relativity kinematic quadrupole. If the observer inhabits a strong inhomogeneous region, the lo- cal quadrupole should not be neglected. We calculate such local quadrupole under the assumption that there is a huge density fluctuation field in the direction (284°, 74°), where the density fluctuation is 10-3, and its center is - 112 h-1 Mpc away from us. After removing such mock signals from WMAP data, the power in the quadrupole, C2, increases from the range (200 - 260 μK2) to - 1000 μK2. The quantity S, which is used to estimate the alignment between the quadrupole and the octopole, decreases from (0.7 - 0.74) to (0.31 - 0.37), while the model predicts that C2 = 1071.5 μK2, and S = 0.412. So our local density inhomogeneity model can, in part, explain the WMAP low-l anomalies.
基金Supported by the National Natural Science Foundation of China.
文摘We study the local structure of Cosmic Microwave Background (CMB) temperature maps released by the Wilkinson Microwave Anisotropy Probe (WMAP) team, and find a new kind of structure, which can be described as follows: a peak (or valley) of average temperature is often followed by a peak of temperature fluctuation that is 4° away. This structure is important for the following reasons: both the well known cold spot detected by Cruz et al. and the hot spot detected by Vielva et al. with the same technology (the third spot in their article) have such structure; more spots that are similar to them can be found on CMB maps and they also tend to be significant cold/hot spots; if we change the 4° characteristic into an artificial one, such as 3° or 5°, there will be less "similar spots", and the temperature peaks or valleys will be less significant. The presented "sim- ilar spots" have passed a strict consistency test which requires them to be significant on at least three different CMB temperature maps. We hope that this article could arouse some interest in the relationship of average temperature with temperature fluctuation in local areas; meanwhile, we are also trying to find an explanation for it which might be important to CMB observation and theory.