Using the Hartle-Hawking method, we discuss the quantum Cosmology with O_(8N+1)^-symmetric coupling scalar field. The corresponding Wheeler-De Witt equation has been derived, and the wave function of the universe calc...Using the Hartle-Hawking method, we discuss the quantum Cosmology with O_(8N+1)^-symmetric coupling scalar field. The corresponding Wheeler-De Witt equation has been derived, and the wave function of the universe calculated. We got the material solution of the cosmic wave function in harmonic eigenstate, and the solution of space is the product of the Gauss factor and one polynomial. After analysing the wave function of the universe under the quantum effect, we found that the probability density of the universe appearing at a=0 is zero, and that the minimal radius of the ground state of the universe is on the Planck scale. The analysis of the wave function of the universe, also reveals that at the very early stage of the universe the probability density of the multl-scalar field is smaller than that of the onescalar field.展开更多
This paper studies phantom linear scalar field (LSF) and phantom non-linear Born-Infeld (NLBI) scalar field with square potential of the form V(Ф) =1/2m^2Ф^2. The equation of state parameter w(z), and evolut...This paper studies phantom linear scalar field (LSF) and phantom non-linear Born-Infeld (NLBI) scalar field with square potential of the form V(Ф) =1/2m^2Ф^2. The equation of state parameter w(z), and evolution of scale factor a(t) in both phantom LSF and phantom NLBI scalar model are explored. The age of universe Hot and the transition redshift Z are obtained. The Gold data set of 157-SN-Ia is used to constrain parameters of the two models by numerical calculation. The phantom LSF is slightly better than the phantom NLBI type scalar field model for a large m. Although a smaller m corresponding to a slower rolling of field Ф better fits the observation data, the difference between phantom NLBI scalar field and phantom LSF is not distinct in this case.展开更多
The physical nature of the fundamental scalar field generation and hence the origination of the Universe is a matter of the discussions for many years. We propose to use the statistical approach to the description of ...The physical nature of the fundamental scalar field generation and hence the origination of the Universe is a matter of the discussions for many years. We propose to use the statistical approach to the description of the steady states of the quasi stationary systems with the elements of the quantum field theory methods as a basis to explain the appearance of the cosmological scalar field. Particularly, we apply two fundamental principles, i.e., the H-theorem and least-energy principle to show principal possibility of the scalar field origination. Along with the basic statement that in the presence of the fundamental scalar field, the energy of the vacuum ground state is lower than the ground state energy of the vacuum with no scalar field (primary vacuum), and with regard to the nonlinear interaction of fluctuating physical fields with the scalar field, these principles are employed to reveal probable phase transitions that may be associated with origin and further evolution of the Universe. Thus, we propose the possible physical justification of the spontaneous cosmological scalar field generation.展开更多
Tilted Bianchi type VI0 cosmological model is investigated in a new scalar tensor theory of gravitation pro-posed by Saez and Ballester (Physics Letters A 113:467, 1986). Exact solutions to the field equations are der...Tilted Bianchi type VI0 cosmological model is investigated in a new scalar tensor theory of gravitation pro-posed by Saez and Ballester (Physics Letters A 113:467, 1986). Exact solutions to the field equations are derived when the metric potentials are functions of cosmic time only. Some physical and geometrical proper-ties of the solutions are also discussed.展开更多
We present a Dark Energy (DE) model based on a scalar field with an inverse power law potential (IPL) V(∅)=M4+n∅−n. We consider three different models n=1/2, n=3/4 and n=1 and we vary the...We present a Dark Energy (DE) model based on a scalar field with an inverse power law potential (IPL) V(∅)=M4+n∅−n. We consider three different models n=1/2, n=3/4 and n=1 and we vary the value of M and the initial amount of energy density Ω∅at the scale factor ac. We obtain a time dependent equation of state (EoS) , with w∅=1/3 at early times for a scale factor ac with a steep transition to w∅=1 at , , , lasting a long period of time and a subsequent descent w∅=-1 to for to finally grow to w∅= -0.906, w∅=-0.932, w∅=-0.924 for n=1/2, n=3/4 and n=1 respectively. The values of M and Ω∅(ac) are M(eV)= 4.63,127.31,2465.46 and Ω∅(ac)=0.038,0.148,0.227 for n= 1/2, n= 3/4 and n=1 respectively. We show the differences in the evolution of H, the CMB and Matter power spectra, and the redshift space distortion (RSD)parameter. Precision cosmological data allow us to test the dynamics of Dark Energy and we obtain in all three cases a reduction of ?compared to ∧CDM with and an equivalent fit for CMB and SNIa data.展开更多
We present constraints on the quintessence scalar field model from observational data of the variation of the fine structure constant obtained from the Keck telescope and VLT. Within the theoretical frame proposed by ...We present constraints on the quintessence scalar field model from observational data of the variation of the fine structure constant obtained from the Keck telescope and VLT. Within the theoretical frame proposed by Bekenstein, the constraints on the parameters of the quintessence scalar field model are obtained. Considering the prior of Ωm0 as WMAP 7 suggests, we obtain various results from different sam- ples. Based on these results, we also calculate the probability density function of the coupling constant ζ. The best-fit values show a consistent relationship between ζ and the different experimental results. In our work, we test two different potential models, namely, the inverse power law potential and the exponential potential. The results show that both the large value of the parameters in the potential and the strong coupling can cause a variation in the fine structure constant.展开更多
On studying some new models of Robertson-Walker universes with a Brans-Dicke scalar field, it is found that most of these universes contain a dark energy like fluid which confirms the present scenario of the expansion...On studying some new models of Robertson-Walker universes with a Brans-Dicke scalar field, it is found that most of these universes contain a dark energy like fluid which confirms the present scenario of the expansion of the universe. In one of the cases, the exact solution of the field equations gives a universe with a false vacuum, while in another it reduces to that of dust distribution in the Brans-Dicke cosmology when the cosmological constant is not in the picture. In one particular model it is found that the universe may undergo a Big Rip in the future, and thus it will be very interesting to investigate such models further.展开更多
In this study, we consider cosmological models driven by several canonical or noncanonical scalar fields, and we show the manner in which twinlike models for a canonical model can be constructed from noncanonical ones...In this study, we consider cosmological models driven by several canonical or noncanonical scalar fields, and we show the manner in which twinlike models for a canonical model can be constructed from noncanonical ones using the superpotential method. We conclude that it is possible to construct twinlike models for multifield cosmological models, even with a nonzero spatial curvature.This work extends the discussions of [D. Bazeia, and J. D. Dantas, Phys. Rev. D 85, 067303(2012)] to cases with multi scalar fields and with non-vanished spatial curvature, by using a different superpotential method.展开更多
This paper is devoted to study the modified holographic dark energy model by taking its different aspects in the t/at Kaiuza-Klein universe. We construct the equation of state parameter which evolutes the universe fro...This paper is devoted to study the modified holographic dark energy model by taking its different aspects in the t/at Kaiuza-Klein universe. We construct the equation of state parameter which evolutes the universe from quintessence region towards the vacuum. It is found that the modified holographic model exhibits instability against small perturbations in the early epoch of the universe but becomes stable in the later times. We also develop its correspondence with some scalar field dark energy models. It is interesting to mention here that ail the results are consistent with the present observations.展开更多
This study extends the investigation of quantum dissipative effects of a cosmological scalar field by taking into account cosmic expansion and contraction.Cheung,Drewes,Kang,and Kim calculated the effective action and...This study extends the investigation of quantum dissipative effects of a cosmological scalar field by taking into account cosmic expansion and contraction.Cheung,Drewes,Kang,and Kim calculated the effective action and quantum dissipative effects of a cosmological scalar field in a recent work,where analytical expressions for the effective potential and damping coefficient were presented using a simple scalar model with quartic interactions,and the work was conducted using Minkowski-space propagators in loop diagrams.In this work,we incorporate the Hubble expansion and contraction of the cosmic background and focus on the thermal dynamics of a scalar field in a regime where the effective potential changes slowly.Given that the Hubble parameter,H,attains a small but non-zero value,we carry out calculations to the first order in H.If we set H=0,all results match those in flat spacetime.Interestingly,we must integrate over the resonances,which in turn leads to an amplification of the effects of a non-zero H.This is an intriguing phenomenon,which cannot be uncovered in flat spacetime.The implications on particle creations in the early universe will be studied in a forthcoming study.展开更多
A scalar field with a pole in its kinetic term is often used to study cosmological inflation;it can also play the role of dark energy,which is called the pole dark energy model.We propose a generalized model where the...A scalar field with a pole in its kinetic term is often used to study cosmological inflation;it can also play the role of dark energy,which is called the pole dark energy model.We propose a generalized model where the scalar field may have two or even multiple poles in the kinetic term,and we call it the multi-pole dark energy.We find that the poles can place some restrictions on the values of the original scalar field with a non-canonical kinetic term.After the transformation to the canonical form,we get a flat potential for the transformed scalar field even if the original field has a steep one.The late-time evolution of the universe is obtained explicitly for the two pole model,while dynamical analysis is performed for the multiple pole model.We find that it does have a stable attractor solution,which corresponds to the universe dominated by the potential of the scalar field.展开更多
基金Project supported by the National Natural Science Foundation of China.
文摘Using the Hartle-Hawking method, we discuss the quantum Cosmology with O_(8N+1)^-symmetric coupling scalar field. The corresponding Wheeler-De Witt equation has been derived, and the wave function of the universe calculated. We got the material solution of the cosmic wave function in harmonic eigenstate, and the solution of space is the product of the Gauss factor and one polynomial. After analysing the wave function of the universe under the quantum effect, we found that the probability density of the universe appearing at a=0 is zero, and that the minimal radius of the ground state of the universe is on the Planck scale. The analysis of the wave function of the universe, also reveals that at the very early stage of the universe the probability density of the multl-scalar field is smaller than that of the onescalar field.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10573012, 10575068), and the Shanghai Municipal Science and Technology Commission (Grant No.04dz05905)
文摘This paper studies phantom linear scalar field (LSF) and phantom non-linear Born-Infeld (NLBI) scalar field with square potential of the form V(Ф) =1/2m^2Ф^2. The equation of state parameter w(z), and evolution of scale factor a(t) in both phantom LSF and phantom NLBI scalar model are explored. The age of universe Hot and the transition redshift Z are obtained. The Gold data set of 157-SN-Ia is used to constrain parameters of the two models by numerical calculation. The phantom LSF is slightly better than the phantom NLBI type scalar field model for a large m. Although a smaller m corresponding to a slower rolling of field Ф better fits the observation data, the difference between phantom NLBI scalar field and phantom LSF is not distinct in this case.
文摘The physical nature of the fundamental scalar field generation and hence the origination of the Universe is a matter of the discussions for many years. We propose to use the statistical approach to the description of the steady states of the quasi stationary systems with the elements of the quantum field theory methods as a basis to explain the appearance of the cosmological scalar field. Particularly, we apply two fundamental principles, i.e., the H-theorem and least-energy principle to show principal possibility of the scalar field origination. Along with the basic statement that in the presence of the fundamental scalar field, the energy of the vacuum ground state is lower than the ground state energy of the vacuum with no scalar field (primary vacuum), and with regard to the nonlinear interaction of fluctuating physical fields with the scalar field, these principles are employed to reveal probable phase transitions that may be associated with origin and further evolution of the Universe. Thus, we propose the possible physical justification of the spontaneous cosmological scalar field generation.
文摘Tilted Bianchi type VI0 cosmological model is investigated in a new scalar tensor theory of gravitation pro-posed by Saez and Ballester (Physics Letters A 113:467, 1986). Exact solutions to the field equations are derived when the metric potentials are functions of cosmic time only. Some physical and geometrical proper-ties of the solutions are also discussed.
文摘We present a Dark Energy (DE) model based on a scalar field with an inverse power law potential (IPL) V(∅)=M4+n∅−n. We consider three different models n=1/2, n=3/4 and n=1 and we vary the value of M and the initial amount of energy density Ω∅at the scale factor ac. We obtain a time dependent equation of state (EoS) , with w∅=1/3 at early times for a scale factor ac with a steep transition to w∅=1 at , , , lasting a long period of time and a subsequent descent w∅=-1 to for to finally grow to w∅= -0.906, w∅=-0.932, w∅=-0.924 for n=1/2, n=3/4 and n=1 respectively. The values of M and Ω∅(ac) are M(eV)= 4.63,127.31,2465.46 and Ω∅(ac)=0.038,0.148,0.227 for n= 1/2, n= 3/4 and n=1 respectively. We show the differences in the evolution of H, the CMB and Matter power spectra, and the redshift space distortion (RSD)parameter. Precision cosmological data allow us to test the dynamics of Dark Energy and we obtain in all three cases a reduction of ?compared to ∧CDM with and an equivalent fit for CMB and SNIa data.
基金Supported by the National Natural Science Foundation of China
文摘We present constraints on the quintessence scalar field model from observational data of the variation of the fine structure constant obtained from the Keck telescope and VLT. Within the theoretical frame proposed by Bekenstein, the constraints on the parameters of the quintessence scalar field model are obtained. Considering the prior of Ωm0 as WMAP 7 suggests, we obtain various results from different sam- ples. Based on these results, we also calculate the probability density function of the coupling constant ζ. The best-fit values show a consistent relationship between ζ and the different experimental results. In our work, we test two different potential models, namely, the inverse power law potential and the exponential potential. The results show that both the large value of the parameters in the potential and the strong coupling can cause a variation in the fine structure constant.
文摘On studying some new models of Robertson-Walker universes with a Brans-Dicke scalar field, it is found that most of these universes contain a dark energy like fluid which confirms the present scenario of the expansion of the universe. In one of the cases, the exact solution of the field equations gives a universe with a false vacuum, while in another it reduces to that of dust distribution in the Brans-Dicke cosmology when the cosmological constant is not in the picture. In one particular model it is found that the universe may undergo a Big Rip in the future, and thus it will be very interesting to investigate such models further.
基金supported by the National Natural Science Foundation of China(Grant Nos.11605127,11522541,11405121,and 11375075)China Postdoctoral Science Foundation(Grant No.2016M592770)
文摘In this study, we consider cosmological models driven by several canonical or noncanonical scalar fields, and we show the manner in which twinlike models for a canonical model can be constructed from noncanonical ones using the superpotential method. We conclude that it is possible to construct twinlike models for multifield cosmological models, even with a nonzero spatial curvature.This work extends the discussions of [D. Bazeia, and J. D. Dantas, Phys. Rev. D 85, 067303(2012)] to cases with multi scalar fields and with non-vanished spatial curvature, by using a different superpotential method.
文摘This paper is devoted to study the modified holographic dark energy model by taking its different aspects in the t/at Kaiuza-Klein universe. We construct the equation of state parameter which evolutes the universe from quintessence region towards the vacuum. It is found that the modified holographic model exhibits instability against small perturbations in the early epoch of the universe but becomes stable in the later times. We also develop its correspondence with some scalar field dark energy models. It is interesting to mention here that ail the results are consistent with the present observations.
基金Supported in parts by the NSF China(11775110,11690034)the European Union’s Horizon 2020 research and innovation programme(RISE)under the Marie Sk′lodowska-Curie grant agreement(644121)the Priority Academic Program Development for Jiangsu Higher Education Institutions(PAPD)。
文摘This study extends the investigation of quantum dissipative effects of a cosmological scalar field by taking into account cosmic expansion and contraction.Cheung,Drewes,Kang,and Kim calculated the effective action and quantum dissipative effects of a cosmological scalar field in a recent work,where analytical expressions for the effective potential and damping coefficient were presented using a simple scalar model with quartic interactions,and the work was conducted using Minkowski-space propagators in loop diagrams.In this work,we incorporate the Hubble expansion and contraction of the cosmic background and focus on the thermal dynamics of a scalar field in a regime where the effective potential changes slowly.Given that the Hubble parameter,H,attains a small but non-zero value,we carry out calculations to the first order in H.If we set H=0,all results match those in flat spacetime.Interestingly,we must integrate over the resonances,which in turn leads to an amplification of the effects of a non-zero H.This is an intriguing phenomenon,which cannot be uncovered in flat spacetime.The implications on particle creations in the early universe will be studied in a forthcoming study.
基金Supported by National Science Foundation of China(11105091,11047138)"Chen Guang"project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation(12CG51)Shanghai Natural Science Foundation,China(10ZR1422000)。
文摘A scalar field with a pole in its kinetic term is often used to study cosmological inflation;it can also play the role of dark energy,which is called the pole dark energy model.We propose a generalized model where the scalar field may have two or even multiple poles in the kinetic term,and we call it the multi-pole dark energy.We find that the poles can place some restrictions on the values of the original scalar field with a non-canonical kinetic term.After the transformation to the canonical form,we get a flat potential for the transformed scalar field even if the original field has a steep one.The late-time evolution of the universe is obtained explicitly for the two pole model,while dynamical analysis is performed for the multiple pole model.We find that it does have a stable attractor solution,which corresponds to the universe dominated by the potential of the scalar field.