期刊文献+
共找到512篇文章
< 1 2 26 >
每页显示 20 50 100
Scalability of the DVFS Power Management Technique as Applied to 3-Tier Data Center Architecture in Cloud Computing
1
作者 Sulieman Bani-Ahmad Saleh Sa’adeh 《Journal of Computer and Communications》 2017年第1期69-93,共25页
The increase in computing capacity caused a rapid and sudden increase in the Operational Expenses (OPEX) of data centers. OPEX reduction is a big concern and a key target in modern data centers. In this study, the sca... The increase in computing capacity caused a rapid and sudden increase in the Operational Expenses (OPEX) of data centers. OPEX reduction is a big concern and a key target in modern data centers. In this study, the scalability of the Dynamic Voltage and Frequency Scaling (DVFS) power management technique is studied under multiple different workloads. The environment of this study is a 3-Tier data center. We conducted multiple experiments to find the impact of using DVFS on energy reduction under two scheduling techniques, namely: Round Robin and Green. We observed that the amount of energy reduction varies according to data center load. When the data center load increases, the energy reduction decreases. Experiments using Green scheduler showed around 83% decrease in power consumption when DVFS is enabled and DC is lightly loaded. In case the DC is fully loaded, in which case the servers’ CPUs are constantly busy with no idle time, the effect of DVFS decreases and stabilizes to less than 10%. Experiments using Round Robin scheduler showed less energy saving by DVFS, specifically, around 25% in light DC load and less than 5% in heavy DC load. In order to find the effect of task weight on energy consumption, a set of experiments were conducted through applying thin and fat tasks. A thin task has much less instructions compared to fat tasks. We observed, through the simulation, that the difference in power reduction between both types of tasks when using DVFS is less than 1%. 展开更多
关键词 cloud computing data centerS Operational EXPENSES Green Technology DVFS Energy Reduction
下载PDF
Towards Attaining Reliable and Efficient Green Cloud Computing Using Micro-Smart Grids to Power Internet Data Center
2
作者 Mohammed Mansur Ibrahim Anas Ahmad Danbala Mustapha Ismail 《Journal of Computer and Communications》 2019年第7期195-205,共11页
Energy generation and consumption are the main aspects of social life due to the fact that modern people’s necessity for energy is a crucial ingredient for existence. Therefore, energy efficiency is regarded as the b... Energy generation and consumption are the main aspects of social life due to the fact that modern people’s necessity for energy is a crucial ingredient for existence. Therefore, energy efficiency is regarded as the best economical approach to provide safer and affordable energy for both utilities and consumers, through the enhancement of energy security and reduction of energy emissions. One of the problems of cloud computing service providers is the high rise in the cost of energy, efficiency together with carbon emission with regards to the running of their internet data centres (IDCs). In order to mitigate these issues, smart micro-grid was found to be suitable in increasing the energy efficiency, sustainability together with the reliability of electrical services for the IDCs. Therefore, this paper presents idea on how smart micro-grids can bring down the disturbing cost of energy, carbon emission by the IDCs with some level of energy efficiency all in an effort to attain green cloud computing services from the service providers. In specific term, we aim at achieving green information and communication technology (ICT) in the field of cloud computing in relations to energy efficiency, cost-effectiveness and carbon emission reduction from cloud data center’s perspective. 展开更多
关键词 cloud computing INTERNET data center Green IT Energy Efficiency Mi-cro-Smart Grids
下载PDF
Big Data of Home Energy Management in Cloud Computing
3
作者 Rizwan Munir Yifei Wei +3 位作者 Rahim Ullah Iftikhar Hussain Kaleem Arshid Umair Tariq 《Journal of Quantum Computing》 2020年第4期193-202,共10页
A smart grid is the evolved form of the power grid with the integration of sensing,communication,computing,monitoring,and control technologies.These technologies make the power grid reliable,efficient,and economical.H... A smart grid is the evolved form of the power grid with the integration of sensing,communication,computing,monitoring,and control technologies.These technologies make the power grid reliable,efficient,and economical.However,the smartness boosts the volume of data in the smart grid.To obligate full benefits,big data has attractive techniques to process and analyze smart grid data.This paper presents and simulates a framework to make sure the use of big data computing technique in the smart grid.The offered framework comprises of the following four layers:(i)Data source layer,(ii)Data transmission layer,(iii)Data storage and computing layer,and(iv)Data analysis layer.As a proof of concept,the framework is simulated by taking the dataset of three cities of the Pakistan region and by considering two cloud-based data centers.The results are analyzed by taking into account the following parameters:(i)Heavy load data center,(ii)The impact of peak hour,(iii)High network delay,and(iv)The low network delay.The presented framework may help the power grid to achieve reliability,sustainability,and cost-efficiency for both the users and service providers. 展开更多
关键词 cloud computing virtual machine data centers internet of things big data in smart grid
下载PDF
A Dynamic Load Balancing Method of Cloud-Center Based on SDN 被引量:6
4
作者 WANG Yong TAO Xiaoling +1 位作者 HE Qian KUANG Yuwen 《China Communications》 SCIE CSCD 2016年第2期130-137,共8页
In order to balancing based on data achieve dynamic load flow level, in this paper, we apply SDN technology to the cloud data center, and propose a dynamic load balancing method of cloud center based on SDN. The appro... In order to balancing based on data achieve dynamic load flow level, in this paper, we apply SDN technology to the cloud data center, and propose a dynamic load balancing method of cloud center based on SDN. The approach of using the SDN technology in the current task scheduling flexibility, accomplish real-time monitoring of the service node flow and load condition by the OpenFlow protocol. When the load of system is imbalanced, the controller can allocate globally network resources. What's more, by using dynamic correction, the load of the system is not obvious tilt in the long run. The results of simulation show that this approach can realize and ensure that the load will not tilt over a long period of time, and improve the system throughput. 展开更多
关键词 SDN cloud computing data center dynamic load balancing
下载PDF
Low-power task scheduling algorithm for large-scale cloud data centers 被引量:3
5
作者 Xiaolong Xu Jiaxing Wu +1 位作者 Geng Yang Ruchuan Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期870-878,共9页
How to effectively reduce the energy consumption of large-scale data centers is a key issue in cloud computing. This paper presents a novel low-power task scheduling algorithm (L3SA) for large-scale cloud data cente... How to effectively reduce the energy consumption of large-scale data centers is a key issue in cloud computing. This paper presents a novel low-power task scheduling algorithm (L3SA) for large-scale cloud data centers. The winner tree is introduced to make the data nodes as the leaf nodes of the tree and the final winner on the purpose of reducing energy consumption is selected. The complexity of large-scale cloud data centers is fully consider, and the task comparson coefficient is defined to make task scheduling strategy more reasonable. Experiments and performance analysis show that the proposed algorithm can effectively improve the node utilization, and reduce the overall power consumption of the cloud data center. 展开更多
关键词 cloud computing data center task scheduling energy consumption.
下载PDF
Exploring Multi-Task Learning for Forecasting Energy-Cost Resource Allocation in IoT-Cloud Systems
6
作者 Mohammad Aldossary Hatem A.Alharbi Nasir Ayub 《Computers, Materials & Continua》 SCIE EI 2024年第6期4603-4620,共18页
Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption i... Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption in cloud centers poses a significant challenge,especially with the escalating energy costs.This paper tackles this issue by introducing efficient solutions for data placement and node management,with a clear emphasis on the crucial role of the Internet of Things(IoT)throughout the research process.The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around data centers.These sensors continuously monitor vital parameters such as energy usage and temperature,thereby providing a comprehensive dataset for analysis.The data generated by the IoT is seamlessly integrated into the Hybrid TCN-GRU-NBeat(NGT)model,enabling a dynamic and accurate representation of the current state of the data center environment.Through the incorporation of the Seagull Optimization Algorithm(SOA),the NGT model optimizes storage migration strategies based on the latest information provided by IoT sensors.The model is trained using 80%of the available dataset and subsequently tested on the remaining 20%.The results demonstrate the effectiveness of the proposed approach,with a Mean Squared Error(MSE)of 5.33%and a Mean Absolute Error(MAE)of 2.83%,accurately estimating power prices and leading to an average reduction of 23.88%in power costs.Furthermore,the integration of IoT data significantly enhances the accuracy of the NGT model,outperforming benchmark algorithms such as DenseNet,Support Vector Machine(SVM),Decision Trees,and AlexNet.The NGT model achieves an impressive accuracy rate of 97.9%,surpassing the rates of 87%,83%,80%,and 79%,respectively,for the benchmark algorithms.These findings underscore the effectiveness of the proposed method in optimizing energy efficiency and enhancing the predictive capabilities of cloud computing systems.The IoT plays a critical role in driving these advancements by providing real-time data insights into the operational aspects of data centers. 展开更多
关键词 cloud computing energy efficiency data center optimization internet of things(IoT) hybrid models
下载PDF
An Eco-Friendly Approach for Reducing Carbon Emissions in Cloud Data Centers 被引量:1
7
作者 Mohammad Aldossary Hatem A.Alharbi 《Computers, Materials & Continua》 SCIE EI 2022年第8期3175-3193,共19页
Based on the Saudi Green initiative,which aims to improve the Kingdom’s environmental status and reduce the carbon emission of more than 278 million tons by 2030 along with a promising plan to achieve netzero carbon ... Based on the Saudi Green initiative,which aims to improve the Kingdom’s environmental status and reduce the carbon emission of more than 278 million tons by 2030 along with a promising plan to achieve netzero carbon by 2060,NEOM city has been proposed to be the“Saudi hub”for green energy,since NEOM is estimated to generate up to 120 Gigawatts(GW)of renewable energy by 2030.Nevertheless,the Information and Communication Technology(ICT)sector is considered a key contributor to global energy consumption and carbon emissions.The data centers are estimated to consume about 13%of the overall global electricity demand by 2030.Thus,reducing the total carbon emissions of the ICT sector plays a vital factor in achieving the Saudi plan to minimize global carbon emissions.Therefore,this paper aims to propose an eco-friendly approach using a Mixed-Integer Linear Programming(MILP)model to reduce the carbon emissions associated with ICT infrastructure in Saudi Arabia.This approach considers the Saudi National Fiber Network(SNFN)as the backbone of Saudi Internet infrastructure.First,we compare two different scenarios of data center locations.The first scenario considers a traditional cloud data center located in Jeddah and Riyadh,whereas the second scenario considers NEOM as a potential cloud data center new location to take advantage of its green energy infrastructure.Then,we calculate the energy consumption and carbon emissions of cloud data centers and their associated energy costs.After that,we optimize the energy efficiency of different cloud data centers’locations(in the SNFN)to reduce the associated carbon emissions and energy costs.Simulation results show that the proposed approach can save up to 94%of the carbon emissions and 62%of the energy cost compared to the current cloud physical topology.These savings are achieved due to the shifting of cloud data centers from cities that have conventional energy sources to a city that has rich in renewable energy sources.Finally,we design a heuristic algorithm to verify the proposed approach,and it gives equivalent results to the MILP model. 展开更多
关键词 cloud computing carbon emissions energy efficiency energy consumption energy costs eco-friendly data center
下载PDF
Cloud Data Center Selection Using a Modified Differential Evolution 被引量:1
8
作者 Yousef Sanjalawe Mohammed Anbar +3 位作者 Salam Al-E’mari Rosni Abdullah Iznan Hasbullah Mohammed Aladaileh 《Computers, Materials & Continua》 SCIE EI 2021年第12期3179-3204,共26页
The interest in selecting an appropriate cloud data center is exponentially increasing due to the popularity and continuous growth of the cloud computing sector.Cloud data center selection challenges are compounded by... The interest in selecting an appropriate cloud data center is exponentially increasing due to the popularity and continuous growth of the cloud computing sector.Cloud data center selection challenges are compounded by ever-increasing users’requests and the number of data centers required to execute these requests.Cloud service broker policy defines cloud data center’s selection,which is a case of an NP-hard problem that needs a precise solution for an efficient and superior solution.Differential evolution algorithm is a metaheuristic algorithm characterized by its speed and robustness,and it is well suited for selecting an appropriate cloud data center.This paper presents a modified differential evolution algorithm-based cloud service broker policy for the most appropriate data center selection in the cloud computing environment.The differential evolution algorithm is modified using the proposed new mutation technique ensuring enhanced performance and providing an appropriate selection of data centers.The proposed policy’s superiority in selecting the most suitable data center is evaluated using the CloudAnalyst simulator.The results are compared with the state-of-arts cloud service broker policies. 展开更多
关键词 cloud computing data center data center selection cloud service broker differential evolution user request
下载PDF
Replication Strategy with Comprehensive Data Center Selection Method in Cloud Environments
9
作者 M.A.Fazlina Rohaya Latip +1 位作者 Hamidah Ibrahim Azizol Abdullah 《Computers, Materials & Continua》 SCIE EI 2023年第1期415-433,共19页
As the amount of data continues to grow rapidly,the variety of data produced by applications is becoming more affluent than ever.Cloud computing is the best technology evolving today to provide multi-services for the ... As the amount of data continues to grow rapidly,the variety of data produced by applications is becoming more affluent than ever.Cloud computing is the best technology evolving today to provide multi-services for the mass and variety of data.The cloud computing features are capable of processing,managing,and storing all sorts of data.Although data is stored in many high-end nodes,either in the same data centers or across many data centers in cloud,performance issues are still inevitable.The cloud replication strategy is one of best solutions to address risk of performance degradation in the cloud environment.The real challenge here is developing the right data replication strategy with minimal data movement that guarantees efficient network usage,low fault tolerance,and minimal replication frequency.The key problem discussed in this research is inefficient network usage discovered during selecting a suitable data center to store replica copies induced by inadequate data center selection criteria.Hence,to mitigate the issue,we proposed Replication Strategy with a comprehensive Data Center Selection Method(RS-DCSM),which can determine the appropriate data center to place replicas by considering three key factors:Popularity,space availability,and centrality.The proposed RS-DCSM was simulated using CloudSim and the results proved that data movement between data centers is significantly reduced by 14%reduction in overall replication frequency and 20%decrement in network usage,which outperformed the current replication strategy,known as Dynamic Popularity aware Replication Strategy(DPRS)algorithm. 展开更多
关键词 cloud computing data replication replica placement data center merits replication algorithm
下载PDF
Subject Oriented Autonomic Cloud Data Center Networks Model
10
作者 Hang Qin Li Zhu 《Journal of Data Analysis and Information Processing》 2017年第3期87-95,共9页
This paper investigates autonomic cloud data center networks, which is the solution with the increasingly complex computing environment, in terms of the management and cost issues to meet users’ growing demand. The v... This paper investigates autonomic cloud data center networks, which is the solution with the increasingly complex computing environment, in terms of the management and cost issues to meet users’ growing demand. The virtualized cloud networking is to provide a plethora of rich online applications, including self-configuration, self-healing, self-optimization and self-protection. In addition, we draw on the intelligent subject and multi-agent system, concerning system model, strategy, autonomic cloud computing, involving independent computing system development and implementation. Then, combining the architecture with the autonomous unit, we propose the MCDN (Model of Autonomic Cloud Data Center Networks). This model can define intelligent state, elaborate the composition structure, and complete life cycle. Finally, our proposed public infrastructure can be provided with the autonomous unit in the supported interaction model. 展开更多
关键词 AUTONOMIC cloud computing AUTONOMOUS Unit data center SELF-CONFIGURATION Service DESCRIPTION
下载PDF
Cloud Computing as Area of Modem Industry
11
作者 Krassimira Schwertner 《Journal of Modern Accounting and Auditing》 2012年第6期907-913,共7页
Cloud computing is a new vision about the needs of information technology (IT). It provides a comprehensive concept for building a homogeneous environment through services offered in the cloud Software-as-a-Service ... Cloud computing is a new vision about the needs of information technology (IT). It provides a comprehensive concept for building a homogeneous environment through services offered in the cloud Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS). Cloud computing is location-independent computing, whereby shared servers provide resources, software, and data to computers and other devices on demand, as with the electricity grid. Cloud computing is computing paradigm that is driven by economies of scale, in which a set of dynamically-scalable resources such as servers, storages, platforms, and services are delivered on demand to the customers over the interuet. "Cloud computing is a continuation of the direction the industry has been going for the last several years in terms of using shared and elastically scalable computing resources," says Rex Wang1, VP of Product Marketing at Oracle, who spoke at the Gartner Data Center Conference, in January 2011. Cloud computing refers to dynamic provision of virtual distributed computational resources on demand via a computer network. Cloud computing is a new high technology industry that possesses a number of advantages over existing business practices: a reduction of expenses, technical staff, and efforts of the end users. 展开更多
关键词 cloud computing data center Software-as-a-Service Platform-as-a-Service Infrastructure-as-a-Service on-demand computing
下载PDF
Enhancing Reliability via Checkpointing in Cloud Computing Systems 被引量:4
12
作者 Ao Zhou Qibo Sun Jinglin Li 《China Communications》 SCIE CSCD 2017年第7期108-117,共10页
Cloud computing is becoming an important solution for providing scalable computing resources via Internet. Because there are tens of thousands of nodes in data center, the probability of server failures is nontrivial.... Cloud computing is becoming an important solution for providing scalable computing resources via Internet. Because there are tens of thousands of nodes in data center, the probability of server failures is nontrivial. Therefore, it is a critical challenge to guarantee the service reliability. Fault-tolerance strategies, such as checkpoint, are commonly employed. Because of the failure of the edge switches, the checkpoint image may become inaccessible. Therefore, current checkpoint-based fault tolerance method cannot achieve the best effect. In this paper, we propose an optimal checkpoint method with edge switch failure-aware. The edge switch failure-aware checkpoint method includes two algorithms. The first algorithm employs the data center topology and communication characteristic for checkpoint image storage server selection. The second algorithm employs the checkpoint image storage characteristic as well as the data center topology to select the recovery server. Simulation experiments are performed to demonstrate the effectiveness of the proposed method. 展开更多
关键词 cloud computing cloud service RELIABILITY fault tolerance data center network
下载PDF
VM migration algorithm for the balance of energy resource across data centers in cloud computing
13
作者 Song Da Fu Xiong +4 位作者 Zhou Jingjing Wang Junchang Zhang Lin Deng Song Qiao Lei 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2019年第5期22-32,共11页
Cloud computing makes it possible for users to share computing power.The framework of multiple data centers gains a greater popularity in modern cloud computing.Due to the uncertainty of the requests from users,the lo... Cloud computing makes it possible for users to share computing power.The framework of multiple data centers gains a greater popularity in modern cloud computing.Due to the uncertainty of the requests from users,the loads of center processing unit(CPU)of different data centers differ.High CPU utilization rate of a data center affects the service provided for users,while low CPU utilization rate of a data center causes high energy consumption.Therefore,it is important to balance the CPU resource across data centers in modern cloud computing framework.A virtual machine(VM)migration algorithm was proposed to balance the CPU resource across data centers.The simulation results suggest that the proposed algorithm has a good performance in the balance of CPU resource across data centers and reducing energy consumption. 展开更多
关键词 cloud computing load balancing across data centers virtual machine migration
原文传递
Collaborative Network Security in Multi-Tenant Data Center for Cloud Computing 被引量:5
14
作者 Zhen Chen Wenyu Dong +3 位作者 Hang Li Peng Zhang Xinming Chen Junwei Cao 《Tsinghua Science and Technology》 SCIE EI CAS 2014年第1期82-94,共13页
A data center is an infrastructure that supports Internet service. Cloud comput the face of the Internet service infrastructure, enabling even small organizations to quickly ng is rapidly changing build Web and mobile... A data center is an infrastructure that supports Internet service. Cloud comput the face of the Internet service infrastructure, enabling even small organizations to quickly ng is rapidly changing build Web and mobile applications for millions of users by taking advantage of the scale and flexibility of shared physical infrastructures provided by cloud computing. In this scenario, multiple tenants save their data and applications in shared data centers, blurring the network boundaries between each tenant in the cloud. In addition, different tenants have different security requirements, while different security policies are necessary for different tenants. Network virtualization is used to meet a diverse set of tenant-specific requirements with the underlying physical network enabling multi-tenant datacenters to automatically address a large and diverse set of tenants requirements. In this paper, we propose the system implementation of vCNSMS, a collaborative network security prototype system used n a multi-tenant data center. We demonstrate vCNSMS with a centralized collaborative scheme and deep packet nspection with an open source UTM system. A security level based protection policy is proposed for simplifying the security rule management for vCNSMS. Different security levels have different packet inspection schemes and are enforced with different security plugins. A smart packet verdict scheme is also integrated into vCNSMS for ntelligence flow processing to protect from possible network attacks inside a data center network 展开更多
关键词 data center network network security software defined network collaborative network security multi- tenant network virtualization intelligent flow processing cloud computing
原文传递
VirtCO:Joint Coflow Scheduling and Virtual Machine Placement in Cloud Data Centers 被引量:2
15
作者 Dian Shen Junzhou Luo +1 位作者 Fang Dong Junxue Zhang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2019年第5期630-644,共15页
Cloud data centers, such as Amazon EC2, host myriad big data applications using Virtual Machines(VMs). As these applications are communication-intensive, optimizing network transfer between VMs is critical to the perf... Cloud data centers, such as Amazon EC2, host myriad big data applications using Virtual Machines(VMs). As these applications are communication-intensive, optimizing network transfer between VMs is critical to the performance of these applications and network utilization of data centers. Previous studies have addressed this issue by scheduling network flows with coflow semantics or optimizing VM placement with traffic considerations.However, coflow scheduling and VM placement have been conducted orthogonally. In fact, these two mechanisms are mutually dependent, and optimizing these two complementary degrees of freedom independently turns out to be suboptimal. In this paper, we present VirtCO, a practical framework that jointly schedules coflows and places VMs ahead of VM launch to optimize the overall performance of data center applications. We model the joint coflow scheduling and VM placement optimization problem, and propose effective heuristics for solving it. We further implement VirtCO with OpenStack and deploy it in a testbed environment. Extensive evaluation of real-world traces shows that compared with state-of-the-art solutions, VirtCO greatly reduces the average coflow completion time by up to 36.5%. This new framework is also compatible with and readily deployable within existing data center architectures. 展开更多
关键词 cloud computing data center coflow SCHEDULING Virtual Machine (VM) PLACEMENT
原文传递
Consolidated cluster systems for data centers in the cloud age: a survey and analysis 被引量:2
16
作者 Jian LIN Li ZHA Zhiwei XU 《Frontiers of Computer Science》 SCIE EI CSCD 2013年第1期1-19,共19页
In the cloud age, heterogeneous application modes on large-scale infrastructures bring about the chal- lenges on resource utilization and manageability to data cen- ters. Many resource and runtime management systems a... In the cloud age, heterogeneous application modes on large-scale infrastructures bring about the chal- lenges on resource utilization and manageability to data cen- ters. Many resource and runtime management systems are developed or evolved to address these challenges and rele- vant problems from different perspectives. This paper tries to identify the main motivations, key concerns, common fea- tures, and representative solutions of such systems through a survey and analysis. A typical kind of these systems is gener- alized as the consolidated cluster system, whose design goal is identified as reducing the overall costs under the quality of service premise. A survey on this kind of systems is given, and the critical issues concerned by such systems are sum- marized as resource consolidation and runtime coordination. These two issues are analyzed and classified according to the design styles and external characteristics abstracted from the surveyed work. Five representative consolidated cluster systems from both academia and industry are illustrated and compared in detail based on the analysis and classifications. We hope this survey and analysis to be conducive to both de- sign implementation and technology selection of this kind of systems, in response to the constantly emerging challenges on infrastructure and application management in data centers. 展开更多
关键词 data center cloud computing distributed re- source management consolidated cluster system resource consolidation runtime coordination
原文传递
Review:Data center network architecture in cloud computing:review, taxonomy, and open research issues 被引量:2
17
作者 Han QI Muhammad SHIRAZ +3 位作者 Jie-yao LIU Abdullah GANI Zulkanain ABDUL RAHMAN Torki A.ALTAMEEM 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2014年第9期776-793,共18页
The data center network(DCN), which is an important component of data centers, consists of a large number of hosted servers and switches connected with high speed communication links. A DCN enables the deployment of r... The data center network(DCN), which is an important component of data centers, consists of a large number of hosted servers and switches connected with high speed communication links. A DCN enables the deployment of resources centralization and on-demand access of the information and services of data centers to users. In recent years, the scale of the DCN has constantly increased with the widespread use of cloud-based services and the unprecedented amount of data delivery in/between data centers, whereas the traditional DCN architecture lacks aggregate bandwidth, scalability, and cost effectiveness for coping with the increasing demands of tenants in accessing the services of cloud data centers. Therefore, the design of a novel DCN architecture with the features of scalability, low cost, robustness, and energy conservation is required. This paper reviews the recent research findings and technologies of DCN architectures to identify the issues in the existing DCN architectures for cloud computing. We develop a taxonomy for the classification of the current DCN architectures, and also qualitatively analyze the traditional and contemporary DCN architectures. Moreover, the DCN architectures are compared on the basis of the significant characteristics, such as bandwidth, fault tolerance, scalability, overhead, and deployment cost. Finally, we put forward open research issues in the deployment of scalable, low-cost, robust, and energy-efficient DCN architecture, for data centers in computational clouds. 展开更多
关键词 data center network cloud computing ARCHITECTURE Network topology
原文传递
Resilient Power Systems Operation with Offshore Wind Farms and Cloud Data Centers 被引量:2
18
作者 Shengwei Liu Yuanzheng Li +2 位作者 Xuan Liu Tianyang Zhao Peng Wang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第6期1985-1998,共14页
To enhance the resilience of power systems with offshore wind farms(OWFs),a proactive scheduling scheme is proposed to unlock the flexibility of cloud data centers(CDCs)responding to uncertain spatial and temporal imp... To enhance the resilience of power systems with offshore wind farms(OWFs),a proactive scheduling scheme is proposed to unlock the flexibility of cloud data centers(CDCs)responding to uncertain spatial and temporal impacts induced by hurricanes.The total life simulation(TLS)is adopted to project the local weather conditions at transmission lines and OWFs,before,during,and after the hurricane.The static power curve of wind turbines(WTs)is used to capture the output of OWFs,and the fragility analysis of transmission-line components is used to formulate the time-varying failure rates of transmission lines.A novel distributionally robust ambiguity set is constructed with a discrete support set,where the impacts of hurricanes are depicted by these supports.To minimize load sheddings and dropping workloads,the spatial and temporal demand response capabilities of CDCs according to task migration and delay tolerance are incorporated into resilient management.The flexibilities of CDC’s power consumption are integrated into a two-stage distributionally robust optimization problem with conditional value at risk(CVaR).Based on Lagrange duality,this problem is reformulated into its deterministic counterpart and solved by a novel decomposition method with hybrid cuts,admitting fewer iterations and a faster convergence rate.The effectiveness of the proposed resilient management strategy is verified through case studies conducted on the modified IEEERTS 24 system,which includes 4 data centers and 5 offshore wind farms. 展开更多
关键词 cloud computing data center decomposition HURRICANE offshore wind farm resilience enhancement total life simulation unit commitment
原文传递
A cost-effective scheme supporting adaptive service migration in cloud data center 被引量:1
19
作者 Bing YU Yanni HAN +2 位作者 Hanning YUAN Xu ZHOU Zhen XU 《Frontiers of Computer Science》 SCIE EI CSCD 2015年第6期875-886,共12页
Cloud computing as an emerging technology promises to provide reliable and available services on de- mand. However, offering services for mobile requirements without dynamic and adaptive migration may hurt the perform... Cloud computing as an emerging technology promises to provide reliable and available services on de- mand. However, offering services for mobile requirements without dynamic and adaptive migration may hurt the performance of deployed services. In this paper, we propose MAMOC, a cost-effective approach for selecting the server and migrating services to attain enhanced QoS more econom- ically. The goal of MAMOC is to minimize the total operating cost while guaranteeing the constraints of resource de- mands, storage capacity, access latency and economies, including selling price and reputation grade. First, we devise an objective optimal model with multi-constraints, describing the relationship among operating cost and the above con- straints. Second, a normalized method is adopted to calculate the operating cost for each candidate VM. Then we give a de- tailed presentation on the online algorithm MAMOC, which determines the optimal server. To evaluate the performance of our proposal, we conducted extensive simulations on three typical network topologies and a realistic data center net- work. Results show that MAMOC is scalable and robust with the larger scales of requests and VMs in cloud environment. Moreover, MAMOC decreases the competitive ratio by identifying the optimal migration paths, while ensuring the constraints of SLA as satisfying as possible. 展开更多
关键词 cloud computing software-defined networking data center service migration QoS
原文传递
Optimal Data Placement and Replication Approach for SIoT with Edge
20
作者 B.Prabhu Shankar S.Chitra 《Computer Systems Science & Engineering》 SCIE EI 2022年第5期661-676,共16页
Social networks(SNs)are sources with extreme number of users around the world who are all sharing data like images,audio,and video to their friends using IoT devices.This concept is the so-called Social Internet of Th... Social networks(SNs)are sources with extreme number of users around the world who are all sharing data like images,audio,and video to their friends using IoT devices.This concept is the so-called Social Internet of Things(SIot).The evolving nature of edge-cloud computing has enabled storage of a large volume of data from various sources,and this task demands an efficient storage procedure.For this kind of large volume of data storage,the usage of data replication using edge with geo-distributed cloud service area is suited to fulfill the user’s expectations with low latency.The major issue is the way to store the data and replicate these large data items optimally and allocate the request from the data center efficiently.For efficient storage of these data,we use edge server,which is part of the cloud server,in this study.Thus,the data are distributed and stored with quick access,which will reduce the latency with response.The proposed data placement approach learns with machine learning(ML)algorithm called radial basis kernel function assisted with support vector machine(RBF-SVM)to classify the data center for storing the user and friend’s data from the SIoT devices.These learning algorithms will be used to predict the workload of the data stored in the data center as either edge or cloud depending on the existing time slots.The data placement with dynamic nature is also optimized using the proposed dynamic graph partitioning(GP)method to meet the individual user’s demand of low latency with minimum costs.This way will keep the SIoT data placement efficient and effective over time.Accordingly,this proposed data placement and replication approach introduces three kinds of innovations compared with the existing data placement approach.(i)Rather than storing the user data in a single cloud,this study uses the edge server closest to the SIoT devices for faster access with reduced response time.(ii)The classification algorithm called RBF-SVM is used to find storage for user for reducing data replication.(iii)Dynamic GP is introduced for data placement with reduced latency and minimum cost to fulfil the dynamic nature of the SN.The simulation result of this approach obtains reduced latency of 130 ms and minimum cost compared with those of the existing data placement approaches.Therefore,our proposed data placement with ML-based learning on edge provides promising results in terms of efficiency,effectiveness,and performance with reduced latency and minimum cost. 展开更多
关键词 data placement data replication social network social internet of things edge computing cloud computing graph partitioning support vector machine machine learning radial basis function LATENCY storage cost
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部