Reducing emissions due to deforestation is considered a low-cost option for mitigating climate change.However,the recent literature suggests higher opportunity costs because of specific deforestation drivers,which ren...Reducing emissions due to deforestation is considered a low-cost option for mitigating climate change.However,the recent literature suggests higher opportunity costs because of specific deforestation drivers,which render reducing emissions from deforestation and forest degradation(REDD+)for mitigating climate change an uncertain,less attractive,and controversial option.Indonesia is one of the largest greenhouse gas emitters.Since 1989,53.80%of its oil palm expansion has come from forestlands,which has generated a significant amount of carbon emissions.This study uses official data and results from the relevant literature to estimate the costs of oil palm-based deforestation under various scenario assumptions,including different output prices,yields,time horizons,and discount rates.We also calculate the additional cost to preserve a 1-ha forest.We demonstrate that the average opportunity cost from avoiding oil palm-based deforestation is 24.42 USD/tCO_(2)eq in Indonesia,approximately 1.3 times the 2011 EUA carbon price.Additional sums of around 5,466.90–11,042.96 USD/ha should be provided to landowners for the deforestation avoidance caused by oil palm expansion.Special attention should be given to the extensive oil palm expansion in Indonesia and the resulting high opportunity costs for achieving the REDD+target.展开更多
Based on oil development costs, the application research in the technical and economic limits calculation of oil development and the production optimal allocation to all the oilfields, was finished. At the same time, ...Based on oil development costs, the application research in the technical and economic limits calculation of oil development and the production optimal allocation to all the oilfields, was finished. At the same time, according to the regression of real development costs, a new method for oil well economic water cut and oil well economic rate are set up, the production optimal allocation is developed with satisfactory results.展开更多
Multilateral wells promise cost savings to oil and fields as they have the potential to reduce overall drilling distances and minimize the number of slots required for the surface facility managing the well.However,dr...Multilateral wells promise cost savings to oil and fields as they have the potential to reduce overall drilling distances and minimize the number of slots required for the surface facility managing the well.However,drilling a multilateral well does not always increase the flow rate when compared to two single-horizontal wells due to competition in production inside the mother-bore.Here,a holistic approach is proposed to find the optimum balance between single and multilateral wells in an offshore oil development.In so doing,the integrated approach finds the highest Net Present Value(NPV)configuration of the field considering drilling,subsurface,production and financial analysis.The model employs stochastic perturbation and Markov Chain Monte-Carlo methods to solve the global maximising-NPV problem.In addition,a combination of Mixed-Integer Linear Programming(MILP),an improved Dijkstra algorithm and a Levenberg-Marquardt optimiser is proposed to solve the rate allocation problem.With the outcome from this analysis,the model suggests the optimum development including number of multilateral and single horizontal wells that would result in the highest NPV.The results demonstrate the potential for modelling to find the optimal use of petroleum facilities and to assist with planning and decision making.展开更多
The authors performed economic assessment of producing biodiesel at pilot scale using used cooking oil as feed-oil in a Bio-Pro 380 EX biodiesel reactor. The overall results suggest that the biodiesel production using...The authors performed economic assessment of producing biodiesel at pilot scale using used cooking oil as feed-oil in a Bio-Pro 380 EX biodiesel reactor. The overall results suggest that the biodiesel production using used cooking oil is a viable project even at large or medium scale. The payback period for producing biodiesel at a pilot scale of 31,320 liters per year was 1.5 years, which was 1 month longer than the payback period for a large plant capacity of 66,000 liters per year. The study demonstrated that the unit selling price and unit production cost are sensitive to the economic feasibility of biodiesel production, since price variations of BWP 1 result in at least a 13% increase and 12% decrease in profit, respectively. The study further revealed that feed-oil (used cooking oil) was the most expensive among all the inputs accounting for 61%, followed by methanol and direct labour with 19% and 13% respectively. The overall energy recorded to produce approximately 360 liters of biodiesel contributed to 2% only, suggesting that Bio-Pro 380 EX biodiesel reactor is relatively a low energy intensity processor. The situation is suitable for the promotion of biodiesel particularly in countries where initiatives to stimulate the development of biofuels are at its infant stage Botswana included.展开更多
In order to respond to the national policy of energy saving and consumption reduction, the temperature drop formula of annular pipeline should be established to optimize the water mixing temperature and water mixing f...In order to respond to the national policy of energy saving and consumption reduction, the temperature drop formula of annular pipeline should be established to optimize the water mixing temperature and water mixing flow. The traditional temperature drop formula applies the high water cut actual situation to 13.7%. On the basis of the traditional Schulhof temperature drop formula, the influence of hydraulic friction on the oil flow temperature is calculated by the calculus idea. The heat transfer coefficient of the pipeline under the complex condition is obtained by the inverse algorithm, and the water mixing flow and water temperature are simulated with MATLAB. The function surface diagram of the degree and the back station temperature. The actual error can be reduced to 4.8%, and the return station temperature can be optimized by 7 degrees.展开更多
This study investigated the removal of hexavalent chromium, Cr(VI) from aqueous solution by adsorption using palm oil fuel ash (POFA), an agricultural waste from the palm oil industry. POFA adsorbent was characterized...This study investigated the removal of hexavalent chromium, Cr(VI) from aqueous solution by adsorption using palm oil fuel ash (POFA), an agricultural waste from the palm oil industry. POFA adsorbent was characterized by X-ray diffraction (XRD) analysis. Batch adsorption study revealed that the optimum conditions for the removal were as follows: pH 2, adsorbent dosage 80 g/L and contact time of 6 min, which resulted in 92% removal and 0.464 mg/g maximum adsorption capacity. Adsorption isotherm and kinetic studies showed that Freundlich isotherm and pseudo-second-order kinetic models fitted best to the experimental data. Column adsorption study at 5 mL/min of flow rate showed that 90% removal was obtained at 2 min of contact time which represented its breakthrough point. The column reached saturation at 30 min and the maximum column adsorption capacity recorded was 0.412 mg/g. The column adsorption behavior showed good fit with both Thomas and Yoon-Nelson kinetic models. These findings suggested that the utilization of POFA as a low-cost adsorbent to remove Cr(VI) from wastewater, either in batch or fixed bed adsorption system is not only effective, but concurrently will help to reduce wastes from the palm oil industry.展开更多
The objective of this study was to reduce the environmental impacts of used frying oil waste through the production of biodiesel. A 22 factorial planning has been used to evaluate the influences of alcohol/oil and rea...The objective of this study was to reduce the environmental impacts of used frying oil waste through the production of biodiesel. A 22 factorial planning has been used to evaluate the influences of alcohol/oil and reaction time on the biodiesel production yield. The optimal condition to produce the biodiesel has been found by use of the response surface methodology and analysis of variance to obtain the fitting model. This study was conducted in Campinas city, Brazil, where were collected the waste oil. An analysis of ecological cost also has been developed. Cooking oils collected from Campinas homes were mixed with ethanol in planned proportions (1:9, 1:7 and 1:5) and were transesterified at 60 ℃ and planned reaction times (30, 60 or 90 min), in order to obtain biodiesel, using 0.1% NaOH as a catalyst. The results of the physical-chemical analyses demonstrated that the biodiesels obtained possessed characteristics close to those required by Brazilian standards. This fuel could be used in fleets of buses, trucks and machines, or even sold to fuel distributors, which results in a solving between US$0.8 and US$4.5 millions. Thus, Campinas would gain environmental credits and become a sustainable city.展开更多
The purpose of this paper is to investigate reasonable cost benefit criteria within the framework of environmental formal safety assessment (FSA). In this study a statistical analysis of oil spill data was carried o...The purpose of this paper is to investigate reasonable cost benefit criteria within the framework of environmental formal safety assessment (FSA). In this study a statistical analysis of oil spill data was carried out based on the report of International Oil Pollution Compensation Funds. According to the statistical study of actual oil spill from tankers, it is found that collisions and groundings are the most probable causes of the oil spills from tankers. Probability distributions of costs of oil spill and oil spill amount are investigated, and a non-linear regression formula between costs of oil spills and oil spill weight are derived. Using the regression formula, an oil spill weight dependent CATStm (Cost of Averting a Ton of oil Spilt) is proposed. Moreover in order to apply the weight dependent CATSthr to cost benefit analysis (CBA), a new cost-effective criterion is newly proposed with considering its concrete application to environmental FSA.展开更多
Petroleum products contamination is a world-wide problem that threatens polluting groundwater and surface water systems. However, the problem is not only large-scale in scope when viewed from a case-by-case basis. Man...Petroleum products contamination is a world-wide problem that threatens polluting groundwater and surface water systems. However, the problem is not only large-scale in scope when viewed from a case-by-case basis. Many fueling, construction, agricultural, and industrial activities result in the problem of managing smaller quantities of these soils from an ecological safety perspective. Landfilling has been the disposal method of choice in the US;however, this option is becoming economically prohibitive and it does not really offer a true degradation fate for the pollutants. This study focused on the proving of an innovative biocell design that afforded a high level of petroleum degradation within a simple and cost effective design. Additionally, the design offered a remediation solution for sites not easily accessed. Soil contaminated with both diesel fuel and gasoline collected from a former filling station was used in this on-site remediation case study. Rapid biodegradation of the petroleum products were observed at the initiation of the study with rates leveling off as the study progressed with the final total petroleum hydrocarbon concentration being 10 mg/kg at Day 90. Oxygen uptake rates were monitored and found to nicely track both microbial activity and pollutant removal dynamics. The biocell design met all expectations by being effective, yet simple to build and operate.展开更多
Oleic acid surface-modified Cu nanoparticles with an average size of 20 nm were prepared by liquid phase reducing reaction. The tribological performance and mechanism of nanocopper as additive were studied by means of...Oleic acid surface-modified Cu nanoparticles with an average size of 20 nm were prepared by liquid phase reducing reaction. The tribological performance and mechanism of nanocopper as additive were studied by means of tribotester, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and nanoindentation instrument. The results indicate that the modified nanocopper additive can significantly improve the wear resistance and reduce friction coefficient of base oil. A copper protective film is formed and contributes to the excellent tribological properties of nanocopper additive. On the basis of the film forming mechanism, a new in-situ repair method was designed and used to repair wear-out-failure injection pump plunger and barrel. Furthermore, the current research progress of nanoparticles as green energy-saving lubricating oil additives were presented.展开更多
The tourist industry, as global mass phenomenon, is inextricably linked to the evolution of air transport systems and air carriers, in turn, depends on tourism to ensure stability in routes and prices. Therefore, both...The tourist industry, as global mass phenomenon, is inextricably linked to the evolution of air transport systems and air carriers, in turn, depends on tourism to ensure stability in routes and prices. Therefore, both sectors must face the new challenges together, the transport industry is heading a problem of energy and cost overruns, that inevitably will affect tourism in the short term. The first energy crisis that they are starting to live, has been mitigated by changes in three parameters: (1) the international regulation of commercial aviation; (2) the connectivity and business (birth of low cost companies) models; and (3) the new policies for climate change and gas emission. So far, the rapid growth of the tourist industry has being held on a fast and cheap access to transport energy resources based on the false belief of unlimited access to energy. The article is a review of the state of the art, and the research papers published on air transportation, relating to tourism and the emergence of low cost airlines, in order to give a global vision for the decision makers of mass destinations, as it is the case of the Canary Islands that we will use as a reference.展开更多
By reviewing the challenges in the development of oilfields in China under low oil prices,this study analyzes the root causes of cost rising,put forwards the low cost oilfield development strategy and specific paths t...By reviewing the challenges in the development of oilfields in China under low oil prices,this study analyzes the root causes of cost rising,put forwards the low cost oilfield development strategy and specific paths to realize the strategy,and predicts the development potential and prospect of oilfields in China.In addition to the low grade of the reservoir and high development maturation,the fundamental reasons of development full cost rising of oilfields in China are as follows:(1)Facing the problem of resources turning poorer in quality,we have built production capacity at a pace too fast before making enough technical and experimental preparation;(2)technical engineering service model leads to high service cost;(3)team of oil development expertise and matched engineering system cannot satisfy the technical requirements of stabilizing oil production,controlling water cut and fine development.To realize development at low cost,the core is to increase economic recoverable reserves.The concrete paths include:(1)to explore the"Daqing oilfield development culture",improve the ability of leaders in charge of development,and inspire potential of staff;(2)to improve the ability of reservoir dynamics control,and implement precise development by following scientific principles;(3)to speed up integration of water flooding and enhanced oil recovery(EOR)and technological upgrading in order to enhance oil recovery;(4)to innovate key techniques in gas flooding and accelerate the industrial popularization of gas flooding;(5)to break the related transaction barriers and create new management models;and(6)to collaboratively optimize strategic layout and cultivate key oil bases.Although oilfield development in China faces huge challenges in cost,the low-cost development strategy will succeed as long as strategic development of mature and new oil fields is well planned.The cores to lower cost are to control decline rate and enhance oil recovery in mature oil fields,and increase single well productivity through technical innovation and improve engineering service efficiency through management innovation in new oil fields.展开更多
基金supported by the National Natural Science Foundation of China(Program No.72073064)the National Natural Science Foundation of China Youth Science Fund Project(Program No.71703069)+1 种基金the“333 distinguished Talents Project”Foundation of Jiangsu Province in China(Grant No.BRA2018070)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Program No.KYCX20_0876).
文摘Reducing emissions due to deforestation is considered a low-cost option for mitigating climate change.However,the recent literature suggests higher opportunity costs because of specific deforestation drivers,which render reducing emissions from deforestation and forest degradation(REDD+)for mitigating climate change an uncertain,less attractive,and controversial option.Indonesia is one of the largest greenhouse gas emitters.Since 1989,53.80%of its oil palm expansion has come from forestlands,which has generated a significant amount of carbon emissions.This study uses official data and results from the relevant literature to estimate the costs of oil palm-based deforestation under various scenario assumptions,including different output prices,yields,time horizons,and discount rates.We also calculate the additional cost to preserve a 1-ha forest.We demonstrate that the average opportunity cost from avoiding oil palm-based deforestation is 24.42 USD/tCO_(2)eq in Indonesia,approximately 1.3 times the 2011 EUA carbon price.Additional sums of around 5,466.90–11,042.96 USD/ha should be provided to landowners for the deforestation avoidance caused by oil palm expansion.Special attention should be given to the extensive oil palm expansion in Indonesia and the resulting high opportunity costs for achieving the REDD+target.
文摘Based on oil development costs, the application research in the technical and economic limits calculation of oil development and the production optimal allocation to all the oilfields, was finished. At the same time, according to the regression of real development costs, a new method for oil well economic water cut and oil well economic rate are set up, the production optimal allocation is developed with satisfactory results.
文摘Multilateral wells promise cost savings to oil and fields as they have the potential to reduce overall drilling distances and minimize the number of slots required for the surface facility managing the well.However,drilling a multilateral well does not always increase the flow rate when compared to two single-horizontal wells due to competition in production inside the mother-bore.Here,a holistic approach is proposed to find the optimum balance between single and multilateral wells in an offshore oil development.In so doing,the integrated approach finds the highest Net Present Value(NPV)configuration of the field considering drilling,subsurface,production and financial analysis.The model employs stochastic perturbation and Markov Chain Monte-Carlo methods to solve the global maximising-NPV problem.In addition,a combination of Mixed-Integer Linear Programming(MILP),an improved Dijkstra algorithm and a Levenberg-Marquardt optimiser is proposed to solve the rate allocation problem.With the outcome from this analysis,the model suggests the optimum development including number of multilateral and single horizontal wells that would result in the highest NPV.The results demonstrate the potential for modelling to find the optimal use of petroleum facilities and to assist with planning and decision making.
文摘The authors performed economic assessment of producing biodiesel at pilot scale using used cooking oil as feed-oil in a Bio-Pro 380 EX biodiesel reactor. The overall results suggest that the biodiesel production using used cooking oil is a viable project even at large or medium scale. The payback period for producing biodiesel at a pilot scale of 31,320 liters per year was 1.5 years, which was 1 month longer than the payback period for a large plant capacity of 66,000 liters per year. The study demonstrated that the unit selling price and unit production cost are sensitive to the economic feasibility of biodiesel production, since price variations of BWP 1 result in at least a 13% increase and 12% decrease in profit, respectively. The study further revealed that feed-oil (used cooking oil) was the most expensive among all the inputs accounting for 61%, followed by methanol and direct labour with 19% and 13% respectively. The overall energy recorded to produce approximately 360 liters of biodiesel contributed to 2% only, suggesting that Bio-Pro 380 EX biodiesel reactor is relatively a low energy intensity processor. The situation is suitable for the promotion of biodiesel particularly in countries where initiatives to stimulate the development of biofuels are at its infant stage Botswana included.
文摘In order to respond to the national policy of energy saving and consumption reduction, the temperature drop formula of annular pipeline should be established to optimize the water mixing temperature and water mixing flow. The traditional temperature drop formula applies the high water cut actual situation to 13.7%. On the basis of the traditional Schulhof temperature drop formula, the influence of hydraulic friction on the oil flow temperature is calculated by the calculus idea. The heat transfer coefficient of the pipeline under the complex condition is obtained by the inverse algorithm, and the water mixing flow and water temperature are simulated with MATLAB. The function surface diagram of the degree and the back station temperature. The actual error can be reduced to 4.8%, and the return station temperature can be optimized by 7 degrees.
文摘This study investigated the removal of hexavalent chromium, Cr(VI) from aqueous solution by adsorption using palm oil fuel ash (POFA), an agricultural waste from the palm oil industry. POFA adsorbent was characterized by X-ray diffraction (XRD) analysis. Batch adsorption study revealed that the optimum conditions for the removal were as follows: pH 2, adsorbent dosage 80 g/L and contact time of 6 min, which resulted in 92% removal and 0.464 mg/g maximum adsorption capacity. Adsorption isotherm and kinetic studies showed that Freundlich isotherm and pseudo-second-order kinetic models fitted best to the experimental data. Column adsorption study at 5 mL/min of flow rate showed that 90% removal was obtained at 2 min of contact time which represented its breakthrough point. The column reached saturation at 30 min and the maximum column adsorption capacity recorded was 0.412 mg/g. The column adsorption behavior showed good fit with both Thomas and Yoon-Nelson kinetic models. These findings suggested that the utilization of POFA as a low-cost adsorbent to remove Cr(VI) from wastewater, either in batch or fixed bed adsorption system is not only effective, but concurrently will help to reduce wastes from the palm oil industry.
文摘The objective of this study was to reduce the environmental impacts of used frying oil waste through the production of biodiesel. A 22 factorial planning has been used to evaluate the influences of alcohol/oil and reaction time on the biodiesel production yield. The optimal condition to produce the biodiesel has been found by use of the response surface methodology and analysis of variance to obtain the fitting model. This study was conducted in Campinas city, Brazil, where were collected the waste oil. An analysis of ecological cost also has been developed. Cooking oils collected from Campinas homes were mixed with ethanol in planned proportions (1:9, 1:7 and 1:5) and were transesterified at 60 ℃ and planned reaction times (30, 60 or 90 min), in order to obtain biodiesel, using 0.1% NaOH as a catalyst. The results of the physical-chemical analyses demonstrated that the biodiesels obtained possessed characteristics close to those required by Brazilian standards. This fuel could be used in fleets of buses, trucks and machines, or even sold to fuel distributors, which results in a solving between US$0.8 and US$4.5 millions. Thus, Campinas would gain environmental credits and become a sustainable city.
文摘The purpose of this paper is to investigate reasonable cost benefit criteria within the framework of environmental formal safety assessment (FSA). In this study a statistical analysis of oil spill data was carried out based on the report of International Oil Pollution Compensation Funds. According to the statistical study of actual oil spill from tankers, it is found that collisions and groundings are the most probable causes of the oil spills from tankers. Probability distributions of costs of oil spill and oil spill amount are investigated, and a non-linear regression formula between costs of oil spills and oil spill weight are derived. Using the regression formula, an oil spill weight dependent CATStm (Cost of Averting a Ton of oil Spilt) is proposed. Moreover in order to apply the weight dependent CATSthr to cost benefit analysis (CBA), a new cost-effective criterion is newly proposed with considering its concrete application to environmental FSA.
文摘Petroleum products contamination is a world-wide problem that threatens polluting groundwater and surface water systems. However, the problem is not only large-scale in scope when viewed from a case-by-case basis. Many fueling, construction, agricultural, and industrial activities result in the problem of managing smaller quantities of these soils from an ecological safety perspective. Landfilling has been the disposal method of choice in the US;however, this option is becoming economically prohibitive and it does not really offer a true degradation fate for the pollutants. This study focused on the proving of an innovative biocell design that afforded a high level of petroleum degradation within a simple and cost effective design. Additionally, the design offered a remediation solution for sites not easily accessed. Soil contaminated with both diesel fuel and gasoline collected from a former filling station was used in this on-site remediation case study. Rapid biodegradation of the petroleum products were observed at the initiation of the study with rates leveling off as the study progressed with the final total petroleum hydrocarbon concentration being 10 mg/kg at Day 90. Oxygen uptake rates were monitored and found to nicely track both microbial activity and pollutant removal dynamics. The biocell design met all expectations by being effective, yet simple to build and operate.
文摘Oleic acid surface-modified Cu nanoparticles with an average size of 20 nm were prepared by liquid phase reducing reaction. The tribological performance and mechanism of nanocopper as additive were studied by means of tribotester, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and nanoindentation instrument. The results indicate that the modified nanocopper additive can significantly improve the wear resistance and reduce friction coefficient of base oil. A copper protective film is formed and contributes to the excellent tribological properties of nanocopper additive. On the basis of the film forming mechanism, a new in-situ repair method was designed and used to repair wear-out-failure injection pump plunger and barrel. Furthermore, the current research progress of nanoparticles as green energy-saving lubricating oil additives were presented.
文摘The tourist industry, as global mass phenomenon, is inextricably linked to the evolution of air transport systems and air carriers, in turn, depends on tourism to ensure stability in routes and prices. Therefore, both sectors must face the new challenges together, the transport industry is heading a problem of energy and cost overruns, that inevitably will affect tourism in the short term. The first energy crisis that they are starting to live, has been mitigated by changes in three parameters: (1) the international regulation of commercial aviation; (2) the connectivity and business (birth of low cost companies) models; and (3) the new policies for climate change and gas emission. So far, the rapid growth of the tourist industry has being held on a fast and cheap access to transport energy resources based on the false belief of unlimited access to energy. The article is a review of the state of the art, and the research papers published on air transportation, relating to tourism and the emergence of low cost airlines, in order to give a global vision for the decision makers of mass destinations, as it is the case of the Canary Islands that we will use as a reference.
文摘By reviewing the challenges in the development of oilfields in China under low oil prices,this study analyzes the root causes of cost rising,put forwards the low cost oilfield development strategy and specific paths to realize the strategy,and predicts the development potential and prospect of oilfields in China.In addition to the low grade of the reservoir and high development maturation,the fundamental reasons of development full cost rising of oilfields in China are as follows:(1)Facing the problem of resources turning poorer in quality,we have built production capacity at a pace too fast before making enough technical and experimental preparation;(2)technical engineering service model leads to high service cost;(3)team of oil development expertise and matched engineering system cannot satisfy the technical requirements of stabilizing oil production,controlling water cut and fine development.To realize development at low cost,the core is to increase economic recoverable reserves.The concrete paths include:(1)to explore the"Daqing oilfield development culture",improve the ability of leaders in charge of development,and inspire potential of staff;(2)to improve the ability of reservoir dynamics control,and implement precise development by following scientific principles;(3)to speed up integration of water flooding and enhanced oil recovery(EOR)and technological upgrading in order to enhance oil recovery;(4)to innovate key techniques in gas flooding and accelerate the industrial popularization of gas flooding;(5)to break the related transaction barriers and create new management models;and(6)to collaboratively optimize strategic layout and cultivate key oil bases.Although oilfield development in China faces huge challenges in cost,the low-cost development strategy will succeed as long as strategic development of mature and new oil fields is well planned.The cores to lower cost are to control decline rate and enhance oil recovery in mature oil fields,and increase single well productivity through technical innovation and improve engineering service efficiency through management innovation in new oil fields.