期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Heuristics-Based Cost Model for Scientic Workow Scheduling in Clou 被引量:1
1
作者 Ehab Nabiel Al-Khanak Sai Peck Lee +4 位作者 Saif Ur Rehman Khan Navid Behboodian Osamah Ibrahim Khalaf Alexander Verbraeck Hans van Lint 《Computers, Materials & Continua》 SCIE EI 2021年第6期3265-3282,共18页
Scientic Workow Applications(SWFAs)can deliver collaborative tools useful to researchers in executing large and complex scientic processes.Particularly,Scientic Workow Scheduling(SWFS)accelerates the computational pro... Scientic Workow Applications(SWFAs)can deliver collaborative tools useful to researchers in executing large and complex scientic processes.Particularly,Scientic Workow Scheduling(SWFS)accelerates the computational procedures between the available computational resources and the dependent workow jobs based on the researchers’requirements.However,cost optimization is one of the SWFS challenges in handling massive and complicated tasks and requires determining an approximate(near-optimal)solution within polynomial computational time.Motivated by this,current work proposes a novel SWFS cost optimization model effective in solving this challenge.The proposed model contains three main stages:(i)scientic workow application,(ii)targeted computational environment,and(iii)cost optimization criteria.The model has been used to optimize completion time(makespan)and overall computational cost of SWFS in cloud computing for all considered scenarios in this research context.This will ultimately reduce the cost for service consumers.At the same time,reducing the cost has a positive impact on the protability of service providers towards utilizing all computational resources to achieve a competitive advantage over other cloud service providers.To evaluate the effectiveness of this proposed model,an empirical comparison was conducted by employing three core types of heuristic approaches,including Single-based(i.e.,Genetic Algorithm(GA),Particle Swarm Optimization(PSO),and Invasive Weed Optimization(IWO)),Hybrid-based(i.e.,Hybrid-based Heuristics Algorithms(HIWO)),and Hyper-based(i.e.,Dynamic Hyper-Heuristic Algorithm(DHHA)).Additionally,a simulation-based implementation was used for SIPHT SWFA by considering three different sizes of datasets.The proposed model provides an efcient platform to optimally schedule workow tasks by handing data-intensiveness and computational-intensiveness of SWFAs.The results reveal that the proposed cost optimization model attained an optimal Job completion time(makespan)and total computational cost for small and large sizes of the considered dataset.In contrast,hybrid and hyper-based approaches consistently achieved better results for the medium-sized dataset. 展开更多
关键词 Scientic workow scheduling empirical comparison cost optimization model heuristic approach cloud computing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部