In this paper, we introduce the definition of n-star subcategories, which is a generalization of n-star modules and n-C-star modules. We give some characterizations of n-star subcategories, and prove that M is an n-P-...In this paper, we introduce the definition of n-star subcategories, which is a generalization of n-star modules and n-C-star modules. We give some characterizations of n-star subcategories, and prove that M is an n-P-tilting subcategory with respect to cotorsion triple(P, R-Mod, I), if and only if M is an n-star subcategory with I ■Pres^(n)(M), where P denotes the subcategory of projective left R-modules and I denotes the subcategory of injective left R-modules.展开更多
基金Supported by the 2020 Scientific Research Projects in Universities of Gansu Province (Grant No. 2020A-277)。
文摘In this paper, we introduce the definition of n-star subcategories, which is a generalization of n-star modules and n-C-star modules. We give some characterizations of n-star subcategories, and prove that M is an n-P-tilting subcategory with respect to cotorsion triple(P, R-Mod, I), if and only if M is an n-star subcategory with I ■Pres^(n)(M), where P denotes the subcategory of projective left R-modules and I denotes the subcategory of injective left R-modules.