期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
The role of SLC12A family of cation-chloride cotransporters and drug discovery methodologies
1
作者 Shiyao Zhang Nur Farah Meor Azlan +13 位作者 Sunday Solomon Josiah Jing Zhou Xiaoxia Zhou Lingjun Jie Yanhui Zhang Cuilian Dai Dong Liang Peifeng Li Zhengqiu Li Zhen Wang Yun Wang Ke Ding Yan Wang Jinwei Zhang 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第12期1471-1495,共25页
The solute carrier family 12(SLC12)of cation-chloride cotransporters(CCCs)comprises potassium chloride cotransporters(KCCs,e.g.KCC1,KCC2,KCC3,and KCC4)-mediated Cl^(-)extrusion,and sodium potassium chloride cotranspor... The solute carrier family 12(SLC12)of cation-chloride cotransporters(CCCs)comprises potassium chloride cotransporters(KCCs,e.g.KCC1,KCC2,KCC3,and KCC4)-mediated Cl^(-)extrusion,and sodium potassium chloride cotransporters(N[K]CCs,NKCC1,NKCC2,and NCC)-mediated Cl^(-)loading.The CCCs play vital roles in cell volume regulation and ion homeostasis.Gain-of-function or loss-of-function of these ion transporters can cause diseases in many tissues.In recent years,there have been considerable advances in our understanding of CCCs'control mechanisms in cell volume regulations,with many techniques developed in studying the functions and activities of CCCs.Classic approaches to directly measure CCC activity involve assays that measure the transport of potassium substitutes through the CCCs.These techniques include the ammonium pulse technique,radioactive or nonradioactive rubidium ion uptakeassay,and thallium ion-uptake assay.CCCs'activity can also be indirectly observed by measuring gaminobutyric acid(GABA)activity with patch-clamp electrophysiology and intracellular chloride concentration with sensitive microelectrodes,radiotracer^(36)Cl^(-),and fluorescent dyes.Other techniques include directly looking at kinase regulatory sites phosphorylation,flame photometry,22Nat uptake assay,structural biology,molecular modeling,and high-throughput drug screening.This review summarizes the role of CCCs in genetic disorders and cell volume regulation,current methods applied in studying CCCs biology,and compounds developed that directly or indirectly target the CCCs for disease treatments. 展开更多
关键词 Cation-chloride cotransporters Chloride volume regulation Cotransporter assays Drug discovery
下载PDF
Pharmacological inhibition of cation-chloride cotransporters for neurological diseases
2
作者 Rachel Nepomuceno Dandan Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第12期1924-1925,共2页
γ-Aminobutyric acid(GABA)is a major neurotransmitter and plays important roles in both the developing and mature central nervous system(CNS).One way that GABA can act is by binding to fast,ionotropic GABAA recept... γ-Aminobutyric acid(GABA)is a major neurotransmitter and plays important roles in both the developing and mature central nervous system(CNS).One way that GABA can act is by binding to fast,ionotropic GABAA receptors in neurons.The binding of GABA to GABAA receptors causes a conformational change that opens ion channels. 展开更多
关键词 Cl Pharmacological inhibition of cation-chloride cotransporters for neurological diseases GABAA
下载PDF
Role of the cation-chloride-cotransporters in the circadian system 被引量:2
3
作者 Shihan Salihu Nur Farah Meor Azlan +3 位作者 Sunday Solomon Josiah Zhijuan Wu Yun Wang Jinwei Zhang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2021年第5期589-597,共9页
The circadian system plays an immense role in controlling physiological processes in our body.The suprachiasmatic nucleus (SCN) supervises this system,regulating and harmonising the circadian rhythms in our body.Most ... The circadian system plays an immense role in controlling physiological processes in our body.The suprachiasmatic nucleus (SCN) supervises this system,regulating and harmonising the circadian rhythms in our body.Most neurons present in the SCN are GABAergic neurons.Although GABA is considered the main inhibitory neurotransmitter of the CNS,recent studies have shown that excitatory responses were recorded in this area.These responses are enabled by an increase in intracellular chloride ions[Cl;];levels.The chloride (Cl;) levels in GABAergic neurons are controlled by two solute carrier 12 (SLC12)cation-chloride-cotransporters (CCCs):Na^(+)/K^(+)/Cl^(-)co-transporter (NKCC1) and K^(+)/Cl^(-)cotransporter (KCC2),that respectively cause an influx and efflux of Cl^(-).Recent works have found altered expression and/or activity of either of these co-transporters in SCN neurons and have been associated with circadian rhythms.In this review,we summarize and discuss the role of CCCs in circadian rhythms,and highlight these recent advances which attest to CCC’s growing potential as strong research and therapeutic targets. 展开更多
关键词 GABAERGIC Na^(+)-K^(+)-2Cl^(-)cotransporter 1(NKCC1) K^(+)-2Cl^(-)cotransporter 2(KCC2) WNK3-SPAK/OSR1 Chloride(Cl^(-)) homoostasis Suprachiasmatic nucleus(SCN) Circadian rhythms
下载PDF
Metabolic disorders in prediabetes:From mechanisms to therapeutic management
4
作者 Wen-Xin Ping Shan Hu +1 位作者 Jing-Qian Su Song-Ying Ouyang 《World Journal of Diabetes》 SCIE 2024年第3期361-377,共17页
Diabetes,one of the world's top ten diseases,is known for its high mortality and complication rates and low cure rate.Prediabetes precedes the onset of diabetes,during which effective treatment can reduce diabetes... Diabetes,one of the world's top ten diseases,is known for its high mortality and complication rates and low cure rate.Prediabetes precedes the onset of diabetes,during which effective treatment can reduce diabetes risk.Prediabetes risk factors include high-calorie and high-fat diets,sedentary lifestyles,and stress.Consequences may include considerable damage to vital organs,including the retina,liver,and kidneys.Interventions for treating prediabetes include a healthy lifestyle diet and pharmacological treatments.However,while these options are effective in the short term,they may fail due to the difficulty of long-term implementation.Medications may also be used to treat prediabetes.This review examines prediabetic treatments,particularly metformin,glucagon-like peptide-1 receptor agonists,sodium glucose cotransporter 2 inhibitors,vitamin D,and herbal medicines.Given the remarkable impact of prediabetes on the progression of diabetes mellitus,it is crucial to intervene promptly and effectively to regulate prediabetes.However,the current body of research on prediabetes is limited,and there is considerable confusion surrounding clinically relevant medications.This paper aims to provide a comprehensive summary of the pathogenesis of prediabetes mellitus and its associated therapeutic drugs.The ultimate goal is to facilitate the clinical utilization of medications and achieve efficient and timely control of diabetes mellitus. 展开更多
关键词 PREDIABETES Glucagon-like peptide agonists Sodium–glucose cotransporter 2 inhibitors Vitamin D Chinese herbal medicines
下载PDF
New perspectives in the management of diabetic nephropathy
5
作者 Anna Psyllaki Konstantinos Tziomalos 《World Journal of Diabetes》 SCIE 2024年第6期1086-1090,共5页
Diabetic nephropathy(DN)is the leading cause of end-stage renal disease and is also associated with increased risk for cardiovascular events.Until recently,strict glycemic control and blockade of the renin-angiotensin... Diabetic nephropathy(DN)is the leading cause of end-stage renal disease and is also associated with increased risk for cardiovascular events.Until recently,strict glycemic control and blockade of the renin-angiotensin system(RAS)constituted the mainstay of treatment of DN.However,randomized controlled trials showed that sodium-glucose cotransporter 2 inhibitors further reduce the progression of DN.Therefore,these agents are recommended in all patients with DN regardless of DN stage and HbA1c levels.Moreover,additional blockade of the RAS with finerenone,a selective non-steroidal mineralocorticoid receptor antagonist,was also shown to prevent both the decline of renal function and cardiovascular events in this population.Finally,promising preliminary findings suggest that glucagon-like peptide 1 receptor agonists might also exert reno-and cardioprotective effects in patients with DN.Hopefully,this knowledge will improve the outcomes of this high-risk group of patients. 展开更多
关键词 Diabetes mellitus Diabetic nephropathy Sodium-glucose cotransporter 2 inhibitors Finerenone Glucagon-like peptide 1 receptor agonists Finerenone
下载PDF
NKCC1 and NKCC2:The pathogenetic role of cation-chloride cotransporters in hypertension 被引量:1
6
作者 Sergei N.Orlov Svetlana V.Koltsova +2 位作者 Leonid V.Kapilevich Svetlana V.Gusakova Nickolai O.Dulin 《Genes & Diseases》 SCIE 2015年第2期186-196,共11页
This review summarizes the data on the functional significance of ubiquitous(NKCC1)and renal-specific(NKCC2)isoforms of electroneutral sodium,potassium and chloride cotransporters.These carriers contribute to the path... This review summarizes the data on the functional significance of ubiquitous(NKCC1)and renal-specific(NKCC2)isoforms of electroneutral sodium,potassium and chloride cotransporters.These carriers contribute to the pathogenesis of hypertension via regulation of intracellular chloride concentration in vascular smooth muscle and neuronal cells and via sensing chloride concentration in the renal tubular fluid,respectively.Both NKCC1 and NKCC2 are inhibited by furosemide and other high-ceiling diuretics widely used for attenuation of extracellular fluid volume.However,the chronic usage of these compounds for the treatment of hypertension and other volume-expanded disorders may have diverse side-effects due to suppression of myogenic response in microcirculatory beds. 展开更多
关键词 HYPERTENSION Intracellular chloride Myogenic tone Neuronal cell NKCC cotransport Smooth muscle
原文传递
Heterogeneity in cardiorenal protection by Sodium glucose cotransporter 2 inhibitors in heart failure across the ejection fraction strata:Systematic review and meta-analysis
7
作者 Saeed Taheri 《World Journal of Nephrology》 2023年第5期182-200,共19页
BACKGROUND Gliflozins or Sodium glucose cotransporter 2 inhibitors(SGLT2i)are relatively novel antidiabetic medications that have recently been shown to represent favorable effects on patients’cardiorenal outcomes.Ho... BACKGROUND Gliflozins or Sodium glucose cotransporter 2 inhibitors(SGLT2i)are relatively novel antidiabetic medications that have recently been shown to represent favorable effects on patients’cardiorenal outcomes.However,there is shortage of data on potential disparities in this therapeutic effect across different patient subpopulations.AIM To investigate differential effects of SGLT2i on the cardiorenal outcomes of heart failure patients across left ventricular ejection fraction(LVEF)levels.METHODS Literature was searched systematically for the large randomized double-blind controlled trials with long enough follow up periods reporting cardiovascular and renal outcomes in their patients regarding heart failure status and LVEF levels.Data were then meta-analyzed after stratification of the pooled data across the LVEF strata and New York Heart Associations(NYHA)classifications for heart failure using Stata software version 17.0.RESULTS The literature search returned 13 Large clinical trials and 13 post hoc analysis reports.Meta-analysis of the effects of gliflozins on the primary composite outcome showed no significant difference in efficacy across the heart failure subtypes,but higher efficacy were detected in patient groups at lower NYHA classifications(I2=46%,P=0.02).Meta-analyses across the LVEF stratums revealed that a baseline LVEF lower than 30%was associated with enhanced improvement in the primary composite outcome compared to patients with higher LVEF levels at the borderline statistical significance(HR:0.70,95%CI:0.60 to 0.79 vs 0.81,95%CI:0.75 to 0.87;respectively,P=0.06).Composite renal outcome was improved significantly higher in patients with no heart failure than in heart failure patients with preserved ejection fraction(HFpEF)(HR:0.60,95%CI:0.49 to 0.72 vs 0.94,95%CI:0.74 to 1.13;P=0.04).Acute renal injury occurred significantly less frequently in heart failure patients with reduced ejection fraction who received gliflozins than in HFpEF(HR:0.67,95%CI:51 to 0.82 vs 0.94,95%CI:0.82 to 1.06;P=0.01).Volume depletion was consistently increased in response to SGLT2i in all the subgroups.CONCLUSION Heart failure patients with lower LVEF and lower NYHA sub-classifications were found to be generally more likely to benefit from therapy with gliflozins.Further research are required to identify patient subgroups representing the highest benefits or adverse events in response to SGLT2i. 展开更多
关键词 Sodium glucose cotransporter 2 inhibitors Cardiovascular Renal outcome efficacy Heart failure with preserved ejection fraction Heart failure with reduced ejection fraction
下载PDF
Increased PIT1 and PIT2 Expression in Streptozotocin (STZ)-induced Diabetic Mice Contributes to Uptake of iAs^((V))
8
作者 YU Sha Li XU Ling Fei +7 位作者 WU Jun Xia YAO Chen Juan HU Qiao Yun ZHANG Chun Xue ZHAO Xin Yuan WEI Hai Yan WANG Xiao Ke CHEN Gang 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2017年第11期792-801,共10页
Objective This study aimed to investigate the susceptibility of mice with streptozotocin(STZ)-induced diabetes mellitus(TIDM) to the uptake of pentavalent inorganic arsenic(iAs^V) and the possible molecular mech... Objective This study aimed to investigate the susceptibility of mice with streptozotocin(STZ)-induced diabetes mellitus(TIDM) to the uptake of pentavalent inorganic arsenic(iAs^V) and the possible molecular mechanism. Methods TIDM was induced in mice by STZ. TIDM and normal mice were treated with 15.0 mg/kg Na2HAsO4·12H2O by intragastric administration. Then, the concentrations of arsenic in various tissues were measured by atomic fluorescence spectrometry. The gene expression levels of Pit1 and Pit2 were quantified by real-time RT-PCR, and their protein levels were detected by Western blotting in mouse heart, kidney, and liver tissues. Results The concentrations of arsenic in STZ-induced TIDM mouse tissues were higher at 2 h after intragastric administration of Na2HAsO4·12H2O. Compared with the levels in normal mice, PIT1 and PIT2, which play a role in the uptake of iAs^V, were upregulated in the livers and hearts of TIDM mice. PIT1 but not PIT2 was higher in TIDM mouse kidneys. The upregulation of Pit1 and Pit2 expression could be reversed by insulin treatment. Conclusion The increased uptake of iAs^V in TIDM mouse tissues may be associated with increased PIT1 and/or PIT2 expression. 展开更多
关键词 Type I diabetes mellitus Pentavalent inorganic arsenic UPTAKE Phosphate cotransporters
下载PDF
Hyperglycemia in acute ischemic stroke: physiopathological and therapeutic complexity 被引量:8
9
作者 Federica Ferrari Antonio Moretti Roberto Federico Villa 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第2期292-299,共8页
Diabetes mellitus and associated chronic hyperglycemia enhance the risk of acute ischemic stroke and lead to worsened clinical outcome and increased mortality. However, post-stroke hyperglycemia is also present in a n... Diabetes mellitus and associated chronic hyperglycemia enhance the risk of acute ischemic stroke and lead to worsened clinical outcome and increased mortality. However, post-stroke hyperglycemia is also present in a number of non-diabetic patients after acute ischemic stroke, presumably as a stress response. The aim of this review is to summarize the main effects of hyperglycemia when associated to ischemic injury in acute stroke patients, highlighting the clinical and neurological outcomes in these conditions and after the administration of the currently approved pharmacological treatment, i.e. insulin. The disappointing results of the clinical trials on insulin(including the hypoglycemic events) demand a change of strategy based on more focused therapies. Starting from the comprehensive evaluation of the physiopathological alterations occurring in the ischemic brain during hyperglycemic conditions, the effects of various classes of glucose-lowering drugs are reviewed, such as glucose-like peptide-1 receptor agonists, DPP-4 inhibitors and sodium glucose cotransporter 2 inhibitors, in the perspective of overcoming the up-to-date limitations and of evaluating the effectiveness of new potential therapeutic strategies. 展开更多
关键词 acute ischemic stroke diabetes mellitus DPP-4 inhibitor glucose-like peptide-1 receptor agonist HYPERGLYCEMIA HYPOGLYCEMIA insulin PHYSIOPATHOLOGY sodium glucose cotransporter 2 inhibitor
下载PDF
Post-transplant diabetes mellitus and preexisting liver disease-a bidirectional relationship affecting treatment and management 被引量:13
10
作者 Maja Cigrovski Berkovic Lucija Virovic-Jukic +1 位作者 Ines Bilic-Curcic Anna Mrzljak 《World Journal of Gastroenterology》 SCIE CAS 2020年第21期2740-2757,共18页
Liver cirrhosis and diabetes mellitus(DM)are both common conditions with significant socioeconomic burden and impact on morbidity and mortality.A bidirectional relationship exists between DM and liver cirrhosis regard... Liver cirrhosis and diabetes mellitus(DM)are both common conditions with significant socioeconomic burden and impact on morbidity and mortality.A bidirectional relationship exists between DM and liver cirrhosis regarding both etiology and disease-related complications.Type 2 DM(T2DM)is a wellrecognized risk factor for chronic liver disease and vice-versa,DM may develop as a complication of cirrhosis,irrespective of its etiology.Liver transplantation(LT)represents an important treatment option for patients with end-stage liver disease due to non-alcoholic fatty liver disease(NAFLD),which represents a hepatic manifestation of metabolic syndrome and a common complication of T2DM.The metabolic risk factors including immunosuppressive drugs,can contribute to persistent or de novo development of DM and NAFLD after LT.T2DM,obesity,cardiovascular morbidities and renal impairment,frequently associated with metabolic syndrome and NAFLD,may have negative impact on short and long-term outcomes following LT.The treatment of DM in the context of chronic liver disease and post-transplant is challenging,but new emerging therapies such as glucagon-like peptide-1 receptor agonists(GLP-1RAs)and sodium–glucose cotransporter 2 inhibitors(SGLT2i)targeting multiple mechanisms in the shared pathophysiology of disorders such as oxidative stress and chronic inflammation are a promising tool in future patient management. 展开更多
关键词 Diabetes mellitus Liver transplantation Non-alcoholic fatty liver disease Metabolic syndrome INSULIN-RESISTANCE Glucagon-like peptide-1 receptor agonists Sodium–glucose cotransporter 2 inhibitors
下载PDF
Crosstalk between gut microbiota and antidiabetic drug action 被引量:12
11
作者 Yevheniia Kyriachenko Tetyana Falalyeyeva +2 位作者 Oleksandr Korotkyi Nataliia Molochek Nazarii Kobyliak 《World Journal of Diabetes》 SCIE CAS 2019年第3期154-168,共15页
Type 2 diabetes (T2D) is a disorder characterized by chronic inflated blood glucose levels (hyperglycemia), at first due to insulin resistance and unregulated insulin secretion but with tendency towards global spreadi... Type 2 diabetes (T2D) is a disorder characterized by chronic inflated blood glucose levels (hyperglycemia), at first due to insulin resistance and unregulated insulin secretion but with tendency towards global spreading. The gut microbiota is recognized to have an influence on T2D, although surveys have not formed a clear overview to date. Because of the interactions between gut microbiota and host homeostasis, intestinal bacteria are believed to play a large role in various diseases, including metabolic syndrome, obesity and associated disease. In this review, we highlight the animal and human studies which have elucidated the roles of metformin,α-glucosidase inhibitors, glucagon-like peptide-1 agonists, peroxisome proliferator-activated receptors γ agonists, inhibitors of dipeptidyl peptidase-4, sodium/glucose cotransporter inhibitors, and other less studied medications on gut microbiota. This review is dedicated to one of the most widespread diseases, T2D, and the currently used antidiabetic drugs and most promising new findings. In general, the gut microbiota has been shown to have an influence on host metabolism, food consumption, satiety, glucose homoeostasis, and weight gain. Altered intestinal microbiota composition has been noticed in cardiovascular diseases, colon cancer, rheumatoid arthritis, T2D, and obesity. Therefore, the main effect of antidiabetic drugs is on the microbiome composition, basically increasing the short-chain fatty acids-producing bacteria, responsible for losing weight and suppressing inflammation. 展开更多
关键词 Type 2 diabetes Gut microbiota Metformin Α-GLUCOSIDASE INHIBITORS Glucagon-like peptide-1 AGONISTS PEROXISOME proliferator-activated receptors γ AGONISTS Dipeptidyl peptidase-4 INHIBITORS Sodium/glucose COTRANSPORTER INHIBITORS
下载PDF
Sodium-glucose cotransporter 2 inhibitors’ mechanisms of action in heart failure 被引量:6
12
作者 Petra Grubić Rotkvić Maja Cigrovski Berković +2 位作者 Nikola Bulj Luka Rotkvić Ivana Ćelap 《World Journal of Diabetes》 SCIE CAS 2020年第7期269-279,共11页
Three major cardiovascular outcome trials(CVOTs)with a new class of antidiabetic drugs-sodium-glucose cotransporter 2(SGLT2)inhibitors(EMPAREG OUTCOME trial with empagliflozin,CANVAS Program with canagliflozin,DECLARE... Three major cardiovascular outcome trials(CVOTs)with a new class of antidiabetic drugs-sodium-glucose cotransporter 2(SGLT2)inhibitors(EMPAREG OUTCOME trial with empagliflozin,CANVAS Program with canagliflozin,DECLARE-TIMI 58 with dapagliflozin)unexpectedly showed that cardiovascular outcomes could be improved possibly due to a reduction in heart failure risk,which seems to be the most sensitive outcome of SGLT2 inhibition.No other CVOT to date has shown any significant benefit on heart failure events.Even more impressive findings came recently from the DAPA-HF trial in patients with confirmed and well-treated heart failure:Dapagliflozin was shown to reduce heart failure risk for patients with heart failure with reduced ejection fraction regardless of diabetes status.Nevertheless,despite their possible wide clinical implications,there is much doubt about the mechanisms of action and a lot of questions to unravel,especially now when their benefits translated to nondiabetic patients,rising doubts about the validity of some current mechanistic assumptions.The time frame of their cardiovascular benefits excludes glucoselowering and antiatherosclerotic-mediated effects and multiple other mechanisms,direct cardiac as well as systemic,are suggested to explain their early cardiorenal benefits.These are:Anti-inflammatory,antifibrotic,antioxidative,antiapoptotic properties,then renoprotective and hemodynamic effects,attenuation of glucotoxicity,reduction of uric acid levels and epicardial adipose tissue,modification of neurohumoral system and cardiac fuel energetics,sodiumhydrogen exchange inhibition.The most logic explanation seems that SGLT2 inhibitors timely target various mechanisms underpinning heart failure pathogenesis.All the proposed mechanisms of their action could interfere with evolution of heart failure and are discussed separately within the main text. 展开更多
关键词 Sodium-glucose cotransporter 2 inhibitors Heart failure Cardiovascular outcomes Diabetes mellitus Physiological mechanisms Pleiotropic effects
下载PDF
Ipragliflozin: A novel sodium-glucose cotransporter 2 inhibitor developed in Japan 被引量:3
13
作者 Tsuyoshi Ohkura 《World Journal of Diabetes》 SCIE CAS 2015年第1期136-144,共9页
Sodium-glucose cotransporter 2(SGLT2) inhibition induces glucosuria and decreases blood glucose levels in diabetic patients and lowers hypoglycemic risk. SGLT1 is expressed in the kidney and intestine; SGLT1 inhibitio... Sodium-glucose cotransporter 2(SGLT2) inhibition induces glucosuria and decreases blood glucose levels in diabetic patients and lowers hypoglycemic risk. SGLT1 is expressed in the kidney and intestine; SGLT1 inhibition causes abdominal symptoms such as diarrhea and reduces incretin secretion. Therefore, SGLT2 selectivity is important. Ipragliflozin is highly selective for SGLT2. In type 2 diabetes mellitus(T2DM), urinaryglucose excretion increased to 90 g/24 h after 28 d of treatment with ipragliflozin 300 mg/d. Twelve weeks of ipragliflozin 50 mg/d vs placebo reduced glycated hemoglobin and body weight by 0.65% and 0.66 kg, respectively, in Western T2 DM patients, and by 1.3% and 1.89 kg, respectively, in Japanese patients. Ipragliflozin(highly selective SGLT2 inhibitor) improves glycemic control and reduces body weight and lowers hypoglycemic risk and abdominal symptoms. Ipragliflozin can be a novel anti-diabetic and antiobesity agent. 展开更多
关键词 Sodium-glucose COTRANSPORTER 2 INHIBITOR Type 2 diabetes MELLITUS Ipragliflozin JAPAN
下载PDF
Anomalous expression of chloride transporters in the sclerosed hippocampus of mesial temporal lobe epilepsy patients 被引量:2
14
作者 Xiaodong Cai Libai Yang +5 位作者 Jueqian Zhou Dan Zhu Qiang Guo Ziyi Chen Shuda Chen Liemin Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第6期561-568,共8页
The Na+-K+-CI- cotransporter 1 and K+-CI- cotransporter 2 regulate the levels of intracellular chloride in hippocampal cells. Impaired chloride transport by these proteins is thought to be involved in the pathophys... The Na+-K+-CI- cotransporter 1 and K+-CI- cotransporter 2 regulate the levels of intracellular chloride in hippocampal cells. Impaired chloride transport by these proteins is thought to be involved in the pathophysiological mechanisms of mesial temporal lobe epilepsy. Imbalance in the relative expression of these two proteins can lead to a collapse of CI- homeostasis, resulting in a loss of gamma-aminobutyric acid-ergic inhibition and even epileptiform discharges. In this study, we investigated the expression of Na+-K+-CI- cotransporter 1 and K+-CI- cotransporter 2 in the sclerosed hippocampus of patients with mesial temporal lobe epilepsy, using western blot analysis and immunohistochemistry. Compared with the histologically normal hippocampus, the sclerosed hippocampus showed increased Na+-K+-Cl- cotransporter 1 expression and decreased K+-CI- cotransporter 2 expression, especially in CA2 and the dentate gyrus. The change was more prominent for the Na+-K+-CI- cotransporter 1 than for the K+-CI- cotransporter 2. These experimental findings indicate that the balance between intracellular and extracellular chloride may be disturbed in hippocampal sclerosis, contributing to the hyperexcitability underlying epileptic seizures. Changes in Na+-K+-CI-cotransporter 1 expression seems to be the main contributor. Our study may shed new light on possible therapies for patients with mesial temporal lobe epilepsy with hippocampal sclerosis. 展开更多
关键词 neural regeneration brain injury mesial temporal lobe epilepsy hippocampal sclerosis sodium-potassium chloride cotransporter 1 potassium chloride cotransporter 2 gamma-aminobutyric acid chloride ion dentate gyrus CA2 region human grants-supported paperphotographs-containing paper NEUROREGENERATION
下载PDF
Rise of sodium-glucose cotransporter 2 inhibitors in the management of nonalcoholic fatty liver disease 被引量:3
15
作者 Amr Dokmak Mohammad Almeqdadi +1 位作者 Hirsh Trivedi Sandeep Krishnan 《World Journal of Hepatology》 CAS 2019年第7期562-573,共12页
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease in the Western world. It is more prevalent in male gender, and with increasing age, obesity, and insulin resistance. Besides w... Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease in the Western world. It is more prevalent in male gender, and with increasing age, obesity, and insulin resistance. Besides weight loss, there are limited treatment options. The use of anti-diabetic medications has been studied with mixed results. In this review, we discuss the use of anti-diabetic medications in the management of NAFLD with a specific focus on sodium-glucose cotransporter 2 inhibitors. We shed light on the evidence supporting their use in detail and discuss limitations and future directions. 展开更多
关键词 Non-alcoholic fatty LIVER disease Non-alcoholic steatohepatitis Sodiumglucose COTRANSPORTER 2 INHIBITORS LIVER cirrhosis Diabetes
下载PDF
Potential for sodium-glucose cotransporter-2 inhibitors in the management of metabolic syndrome: A systematic review and metaanalysis 被引量:2
16
作者 Abdulbaril Olagunju Naser Yamani +3 位作者 Dorothy Kenny Martina Mookadam Farouk Mookadam Samuel Unzek 《World Journal of Cardiology》 2022年第11期599-616,共18页
BACKGROUND Landmark trials have established the benefits of sodium-glucose cotransporter-2 inhibitors(SGLT2-Is)in cardiovascular disease including heart failure with reduced and preserved ejection fraction and renal d... BACKGROUND Landmark trials have established the benefits of sodium-glucose cotransporter-2 inhibitors(SGLT2-Is)in cardiovascular disease including heart failure with reduced and preserved ejection fraction and renal diseases regardless of the presence of diabetes mellitus.However,studies evaluating the role of SGLT2-Is in metabolic syndrome(MetS)are limited.AIM This study primarily aimed to evaluate the impact of SGLT2-Is on the components of MetS.METHODS Two independent reviewers and an experienced librarian searched Medline,Scopus and the Cochrane central from inception to December 9,2021 to identify placebo controlled randomized controlled trials that evaluated the impact of SGLT2-Is on the components of MetS as an endpoint.Pre-and post-treatment data of each component were obtained.A meta-analysis was performed using the RevMan(version 5.3;Copenhagen:The Nordic Cochrane Center,The Cochrane Collaboration).RESULTS Treatment with SGLT2-Is resulted in a decrease in fasting plasma glucose(–18.07 mg/dL;95%CI:-25.32 to–10.82),systolic blood pressure(–1.37 mmHg;95%CI:-2.08 to–0.65),and waist circumference(–1.28 cm;95%CI:-1.39 to–1.18)compared to placebo.The impact on highdensity lipoprotein cholesterol was similar to placebo(0.01 mg/dL;95%CI:-0.05 to 0.07).CONCLUSION SGLT2-Is have a promising role in the management of MetS. 展开更多
关键词 Metabolic syndrome Sodium-glucose cotransporter 2 inhibitors DAPAGLIFLOZIN Empagliflozin Cardiovascular disease
下载PDF
De novo mutation loci and clinical analysis in a child with sodium taurocholate cotransport polypeptide deficiency: A case report 被引量:2
17
作者 Hui-Yan Liu Meng Li Qi Li 《World Journal of Clinical Cases》 SCIE 2021年第36期11487-11494,共8页
BACKGROUND Sodium taurocholate cotransport polypeptide(NTCP)deficiency disease is a genetic metabolic disorder due to mutations in the SLC10A1 gene and impaired bile acid salt uptake by the basolateral membrane transp... BACKGROUND Sodium taurocholate cotransport polypeptide(NTCP)deficiency disease is a genetic metabolic disorder due to mutations in the SLC10A1 gene and impaired bile acid salt uptake by the basolateral membrane transport protein NTCP in hepatocytes.A variety of clinical manifestations and genetic mutation loci have been reported for this disease.However,specific therapeutic measures are lacking,and the long-term effects are unknown.CASE SUMMARY An infant with elevated bile acids and behavioral neurodevelopmental delay failed to respond to bile acid-lowering therapy.Genetic testing for metabolic liver disease revealed that the child had NTCP deficiency due to the SLC10A1 mutation:c.422dupA(p.Y141X),which is a novel mutation site.The current followup revealed a gradual decrease in bile acid levels after 1 year of age,but the child still had behavioral neurodevelopmental delays.CONCLUSION The clinical manifestations,genetic characteristics,treatment and long-term prognosis due to NTCP deficiency remain poorly defined and need to be further confirmed by more studies and reports. 展开更多
关键词 Sodium taurocholate cotransport polypeptide SLC10A1 gene HYPERCHOLESTEROLEMIA Behavioral neurodevelopmental delay Children Case report
下载PDF
Elucidation of the early infection machinery of hepatitis B virus by using bio-nanocapsule 被引量:1
18
作者 Qiushi Liu Masaharu Somiya Shun'ichi Kuroda 《World Journal of Gastroenterology》 SCIE CAS 2016年第38期8489-8496,共8页
Currently, hepatitis B virus(HBV), upon attaching to human hepatocytes, is considered to interact first with heparan sulfate proteoglycan(HSPG) via an antigenic loop of HBV envelope S protein. Then, it is promptly tra... Currently, hepatitis B virus(HBV), upon attaching to human hepatocytes, is considered to interact first with heparan sulfate proteoglycan(HSPG) via an antigenic loop of HBV envelope S protein. Then, it is promptly transferred to the sodium taurocholate cotransporting polypeptide(NTCP) via the myristoylated N-terminal sequence of pre-S1 region(from Gly-2 to Gly-48, HBV genotype D), and it finally enters the cell by endocytosis. However, it is not clear how HSPG passes HBV to NTCP and how NTCP contributes to the cellular entry of HBV. Owing to the poor availability and the difficulty of manipulations, including fluorophore encapsulation, it has been nearly impossible to perform biochemical and cytochemical analyses using a substantial amount of HBV. A bio-nanocapsule(BNC), which is a hollow nanoparticle consisting of HBV envelope L protein, was efficiently synthesized in Saccharomyces cerevisiae. Since BNC could encapsulate payloads(drugs, genes, proteins) and specifically enter human hepatic cells utilizing HBV-derived infection machinery, it could be used as a model of HBV infection to elucidate the early infection machinery. Recently, it was demonstrated that the N-terminal sequence of pre-S1 region(from Asn-9 to Gly-24) possesses low p H-dependent fusogenic activity, which might play a crucial role in the endosomal escape of BNC payloads and in the uncoating process of HBV. In this minireview, we describe a model in which each domain of the HBV L protein contributes to attachment onto human hepatic cells through HSPG, initiation of endocytosis, interaction with NTCP in endosomes, and consequent provocation of membrane fusion followed by endosomal escape. 展开更多
关键词 Bio-nanocapsule Endosomal escape Hepatitis B virus Heparan sulfate PROTEOGLYCAN Sodium TAUROCHOLATE cotransporting POLYPEPTIDE
下载PDF
Bumetanide promotes neural precursor cell regeneration and dendritic development in the hippocampal dentate gyrus in the chronic stage of cerebral ischemia 被引量:1
19
作者 Wang-shu Xu Xuan Sun +4 位作者 Cheng-guang Song Xiao-peng Mu Wen-ping Ma Xing-hu Zhang Chuan-sheng Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第5期745-751,共7页
Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic... Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumetanide 200 μg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These findings suggest that bumetanide promoted neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic stage of ischemia. 展开更多
关键词 nerve regeneration cerebral ischemia BUMETANIDE Na+-K+-2Cl- cotransporter 1 hippocampal dentate gyrus neurogenesis neuralprecursor cells dendritic development cognitive function neural regeneration
下载PDF
Cardiovascular benefits from SGLT2 inhibition in type 2 diabetes mellitus patients is not impaired with phosphate flux related to pharmacotherapy 被引量:1
20
作者 Mouhamed Nashawi Mahmoud S Ahmed +2 位作者 Toka Amin Mujahed Abualfoul Robert Chilton 《World Journal of Cardiology》 2021年第12期676-694,共19页
The beneficial cardiorenal outcomes of sodium-glucose cotransporter 2 inhibitors(SGLT2i)in patients with type 2 diabetes mellitus(T2DM)have been substantiated by multiple clinical trials,resulting in increased interes... The beneficial cardiorenal outcomes of sodium-glucose cotransporter 2 inhibitors(SGLT2i)in patients with type 2 diabetes mellitus(T2DM)have been substantiated by multiple clinical trials,resulting in increased interest in the multifarious pathways by which their mechanisms act.The principal effect of SGLT2i(-flozin drugs)can be appreciated in their ability to block the SGLT2 protein within the kidneys,inhibiting glucose reabsorption,and causing an associated osmotic diuresis.This ameliorates plasma glucose elevations and the negative cardiorenal sequelae associated with the latter.These include aberrant mitochondrial metabolism and oxidative stress burden,endothelial cell dysfunction,pernicious neurohormonal activation,and the development of inimical hemodynamics.Positive outcomes within these domains have been validated with SGLT2i administration.However,by modulating the sodium-glucose cotransporter in the proximal tubule(PT),SGLT2i consequently promotes sodium-phosphate cotransporter activity with phosphate retention.Phosphatemia,even at physiologic levels,poses a risk in cardiovascular disease burden,more so in patients with type 2 diabetes mellitus(T2DM).There also exists an association between phosphatemia and renal impairment,the latter hampering cardiovascular function through an array of physiologic roles,such as fluid regulation,hormonal tone,and neuromodulation.Moreover,increased phosphate flux is associated with an associated increase in fibroblast growth factor 23 levels,also detrimental to homeostatic cardiometabolic function.A contemporary commentary concerning this notion unifying cardiovascular outcome trial data with the translational biology of phosphate is scant within the literature.Given the apparent beneficial outcomes associated with SGLT2i administration notwithstanding negative effects of phosphatemia,we discuss in this review the effects of phosphate on the cardiometabolic status in patients with T2DM and cardiorenal disease,as well as the mechanisms by which SGLT2i counteract or overcome them to achieve their net effects.Content drawn to develop this conversation begins with proceedings in the basic sciences and works towards clinical trial data. 展开更多
关键词 Sodium-glucose cotransporter 2 PHOSPHATE HYPERPHOSPHATEMIA CARDIOVASCULAR Canagliflozin DAPAGLIFLOZIN Empagliflozin Endothelial
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部