Cotton Verticillium wilt is a serious soil-borne disease that leads to significant losses in fiber yield and quality worldwide. Currently, the most effective way to increase Verticillium wilt resistance is to develop ...Cotton Verticillium wilt is a serious soil-borne disease that leads to significant losses in fiber yield and quality worldwide. Currently, the most effective way to increase Verticillium wilt resistance is to develop new resistant cotton varieties. Lines 5026 and 60182 are two Verticillium wilt-resistant upland cotton accessions. We previously identified a total of 25 quantitative trait loci(QTLs) related to Verticillium wilt resistance from 5026 and 60182 by assembling segregating populations from hybridization with susceptible parents. In the current study, using 13 microsatellite markers flanking QTLs related to Verticillium wilt resistance, we developed 155 cotton inbred lines by pyramiding different QTLs related to Verticillium wilt resistance from a filial generation produced by crossing 5026 and 60182. By examining each allele's effect and performing multiple comparison analysis, we detected four elite QTLs/alleles(q-5/NAU905-2, q-6/NAU2754-2, q-8/NAU3053-1 and q-13/NAU6598-1) significant for Verticillium wilt resistance, pyramiding these elite alleles increased the disease resistance of inbred lines. Furthermore, we selected 34 elite inbred lines, including five lines simultaneously performing elite fiber quality, high yield and resistance to V. dahliae, 14 lines with elite fiber quality and disease resistance, three lines with high yield and disease resistance, and 12 lines with resistance to V. dahliae. No correlation between Verticillium wilt resistance and fiber quality traits/yield and its components was detected in the 155 developed inbred lines. Our results provide candidate markers for disease resistance for use in marker-assisted breeding(MAS), as well as elite germplasms for improving important agronomic traits via modern cotton breeding.展开更多
According to an FAO report in 1996,49000 cotton genotypes are being maintained in germplasm collections worldwide. Of these accessions,approximately 67% reside in the six largest collections. Identification of mutual ...According to an FAO report in 1996,49000 cotton genotypes are being maintained in germplasm collections worldwide. Of these accessions,approximately 67% reside in the six largest collections. Identification of mutual opportunities and challenges faced by these germplasm banks could result展开更多
A total of 8193 accessions,including 6822 Gossypium hirsutum,350 G.hirsutum race(sub-species),385 of G.barbadense,378 of G.arboreum,17 of G.herbaceum and 41 wild species,of
Cotton production in India was stagnant at 12.3 to 17.7 million bales over the decade 1992-2003.The introduction of new technologies during the early part of the decade,notably Bt-cotton technology,hybrids,
Emergence of transgenic Bt-cotton technology has opened up a new chapter in Indian cotton production in 21st century.The cry1Ac gene of Monsanto derived from American Upland Coker-312 background was not directly suita...Emergence of transgenic Bt-cotton technology has opened up a new chapter in Indian cotton production in 21st century.The cry1Ac gene of Monsanto derived from American Upland Coker-312 background was not directly suitable for varied cotton growing situations in India.Delivery of展开更多
Association mapping is a useful tool for the detection of genes selected during plant domestication based on their linkage disequilibrium(LD). This study was carried out to estimate genetic diversity, population str...Association mapping is a useful tool for the detection of genes selected during plant domestication based on their linkage disequilibrium(LD). This study was carried out to estimate genetic diversity, population structure and the extent of LD to develop an association framework in order to identify genetic variations associated with drought and salt tolerance traits. 106 microsatellite marker primer pairs were used in 323 Gossypium hirsutum germplasms which were grown in the drought shed and salt pond for evaluation. Polymorphism(PIC=0.53) was found, and three groups were detected(K=3) with the second likelihood ΔK using STRUCTURE software. LD decay rates were estimated to be 13-15 cM at r2 0.20. Significant associations between polymorphic markers and drought and salt tolerance traits were observed using the general linear model(GLM) and mixed linear model(MLM)(P 0.01). The results also demonstrated that association mapping within the population structure as well as stratification existing in cotton germplasm resources could complement and enhance quantitative trait loci(QTLs) information for marker-assisted selection.展开更多
基金financially supported in part by the National Natural Science Foundation of China (31171590)the National High-Tech R&D Program of China (863 Program, 2012AA101108)+2 种基金the Jiangsu Agriculture Science and Technology Innovation Fund, China (cx(13)3059)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (010-809001)the Jiangsu Collaborative Innovation Center for Modern Crop Production, China (No. 10)
文摘Cotton Verticillium wilt is a serious soil-borne disease that leads to significant losses in fiber yield and quality worldwide. Currently, the most effective way to increase Verticillium wilt resistance is to develop new resistant cotton varieties. Lines 5026 and 60182 are two Verticillium wilt-resistant upland cotton accessions. We previously identified a total of 25 quantitative trait loci(QTLs) related to Verticillium wilt resistance from 5026 and 60182 by assembling segregating populations from hybridization with susceptible parents. In the current study, using 13 microsatellite markers flanking QTLs related to Verticillium wilt resistance, we developed 155 cotton inbred lines by pyramiding different QTLs related to Verticillium wilt resistance from a filial generation produced by crossing 5026 and 60182. By examining each allele's effect and performing multiple comparison analysis, we detected four elite QTLs/alleles(q-5/NAU905-2, q-6/NAU2754-2, q-8/NAU3053-1 and q-13/NAU6598-1) significant for Verticillium wilt resistance, pyramiding these elite alleles increased the disease resistance of inbred lines. Furthermore, we selected 34 elite inbred lines, including five lines simultaneously performing elite fiber quality, high yield and resistance to V. dahliae, 14 lines with elite fiber quality and disease resistance, three lines with high yield and disease resistance, and 12 lines with resistance to V. dahliae. No correlation between Verticillium wilt resistance and fiber quality traits/yield and its components was detected in the 155 developed inbred lines. Our results provide candidate markers for disease resistance for use in marker-assisted breeding(MAS), as well as elite germplasms for improving important agronomic traits via modern cotton breeding.
文摘According to an FAO report in 1996,49000 cotton genotypes are being maintained in germplasm collections worldwide. Of these accessions,approximately 67% reside in the six largest collections. Identification of mutual opportunities and challenges faced by these germplasm banks could result
文摘A total of 8193 accessions,including 6822 Gossypium hirsutum,350 G.hirsutum race(sub-species),385 of G.barbadense,378 of G.arboreum,17 of G.herbaceum and 41 wild species,of
文摘Cotton production in India was stagnant at 12.3 to 17.7 million bales over the decade 1992-2003.The introduction of new technologies during the early part of the decade,notably Bt-cotton technology,hybrids,
文摘Emergence of transgenic Bt-cotton technology has opened up a new chapter in Indian cotton production in 21st century.The cry1Ac gene of Monsanto derived from American Upland Coker-312 background was not directly suitable for varied cotton growing situations in India.Delivery of
基金supported by the National Natural Science Foundation of China(31201246)the Project of International Science and Technology Cooperation and Exchange from the Ministry of Science and Technology,China(2010DFR30620-3)
文摘Association mapping is a useful tool for the detection of genes selected during plant domestication based on their linkage disequilibrium(LD). This study was carried out to estimate genetic diversity, population structure and the extent of LD to develop an association framework in order to identify genetic variations associated with drought and salt tolerance traits. 106 microsatellite marker primer pairs were used in 323 Gossypium hirsutum germplasms which were grown in the drought shed and salt pond for evaluation. Polymorphism(PIC=0.53) was found, and three groups were detected(K=3) with the second likelihood ΔK using STRUCTURE software. LD decay rates were estimated to be 13-15 cM at r2 0.20. Significant associations between polymorphic markers and drought and salt tolerance traits were observed using the general linear model(GLM) and mixed linear model(MLM)(P 0.01). The results also demonstrated that association mapping within the population structure as well as stratification existing in cotton germplasm resources could complement and enhance quantitative trait loci(QTLs) information for marker-assisted selection.