More and more attention is being focused on saline water utilization in irrigation due to the shortage of fresh water to agriculture in many regions. For purpose of reducing the risks of using of saline water for irri...More and more attention is being focused on saline water utilization in irrigation due to the shortage of fresh water to agriculture in many regions. For purpose of reducing the risks of using of saline water for irrigation, the mechanism of soil moisture and salinity distribution and transport should be well understood for developing optimum management strategies. In this paper, field experiments were carried out at Junggar Basin, China, to study the effects of drip irrigation water quality and drip tape arrangement on distribution of soil salinity and soil moisture. Six treatments were designed, including two drip tape arrangement modes and three irrigation water concentration levels (0.24, 4.68, and 7.42 dS m^-l). Results showed that, soil moisture content (SMC) directly beneath the drip tape in all treatments kept a relatively high value about 18% before boll opening stage; the SMC in the narrow strip in single tape arrangement (Ms) plot was obviously lower than that in the double tapes arrangement (Md) plot, indicating that less sufficient water was supplied under the same condition of irrigation depth, but there was no significant reduction in yield. Mulching had not significant influence on salt accumulation but the drip tape arrangement, under the same condition of irrigation water depth and quality, compared with Md, Ms reduced salt accumulation in root zone and brought about relatively high cotton yield.展开更多
A field experiment was carried out to investigate the effects of different emitter discharge rates under drip irrigation on soil salinity distribution and cotton yield in an extreme arid region of Tarim River catchmen...A field experiment was carried out to investigate the effects of different emitter discharge rates under drip irrigation on soil salinity distribution and cotton yield in an extreme arid region of Tarim River catchment in Northwest China. Four treatments of emitter discharge rates, i.e. 1.8, 2.2, 2.6 and 3.2 L/h, were designed under drip irrigation with plastic mulch in this paper. The salt distribution in the range of 70-cm horizontal distance and 100-cm vertical distance from the emitter was measured and analyzed during the cotton growing season. The soil salinity is expressed in terms of electrical conductivity (dS/m) of the saturated soil extract (ECe), which was measured using Time Domain Reflector (TDR) 20 times a year, including 5 irrigation events and 4 measured times before/after an irrigation event. All the treatments were repeated 3 times. The groundwater depth was observed by SEBA MDS Dipper 3 automatically at three experimental sites. The results showed that the order of reduction in averaged soil salinity was 2.6 L/h 〉 2.2 L/h 〉 1.8 L/h 〉 3.2 L/h after the completion of irrigation for the 3-year cotton growing season. Therefore, the choice of emitter discharge rate is considerably important in arid silt loam. Usually, the ideal emitter discharge rate is 2.4-3.0 L/h for soil desalinization with plastic mulch, which is advisable mainly because of the favorable salt leaching of silt loam and the climatic conditions in the studied arid area. Maximum cotton yield was achieved at the emitter discharge rate of 2.6 L/h under drip irrigation with plastic mulch in silty soil at the study site. Hence, the emitter discharge rate of 2.6 L/h is recommended for drip irrigation with plastiic mulch applied in silty soil in arid regions.展开更多
The relation between soil water content and the growth of cotton root was studied for the scheme of field water and cotton yield under mulched drip irrigation. Based on the field experiments, three treatments of soil ...The relation between soil water content and the growth of cotton root was studied for the scheme of field water and cotton yield under mulched drip irrigation. Based on the field experiments, three treatments of soil water content were conducted with 90%, 75%θf, and 60%θf (θfis field water capacity). Cotton roots and root-shoot ratio were studied with digging method, and the soil moisture was observed with TDR (time domain reflector), and cotton yield was measured. The results indicated that the growth of cotton root accorded with Logistic growth curve in the three treatments, the cotton root grew quickly and its weight was very high under 75%θf because of the suitable soil water condition, while grew slowly and its weight was lower under 90%θf due to water moisture beyond the suitable condition, and the root weight was in between under 60%θf For the three water treatments, the cotton root weight decreased with soil depth, and decreased more significantly in deeper soil layer with the soil moisture increasing. And the ratio of cotton root weight in 0-30 cm soil layer to the total root weight was the highest under 75%θf. The cotton root system was distributed mainly in the soil of narrow row and wide row mulched with plastic film, and little in the soil outside plastic film. The weight of cotton root was the highest in the soil of narrow row or wide row mulched with plastic film under 75%θf. Root-shoot ratio decreased with the soil moisture increasing. The soil water content affected cotton yields, and cotton yield was the highest under 75%θf. The higher soil moisture level is unfavorable to the growth of cotton root system and yield of cotton under mulched drip irrigation.展开更多
Effects of soil moisture on cotton root length density (total root length per unit soil volume) and yield under drip irrigation with plastic mulch were studied through field experiments. The results indicate that spat...Effects of soil moisture on cotton root length density (total root length per unit soil volume) and yield under drip irrigation with plastic mulch were studied through field experiments. The results indicate that spatial distributions of root length density of cotton under various water treatments were basically similar. Horizontally, both root length densities of cotton in wide and narrow rows were similar, and higher than that between mulches. Vertically, root length density of cotton decreased with increasing soil depth. The distribution of root length density is different under different irrigation treatments. In conditions of over-irrigation, the root length density of cotton between mulches would increase. However, it would decrease in both the wide rows and narrow rows. The mean root length density of cotton increased with increasing irrigation water. Water stress caused the root length density to increase in lower soil layers. There is a significant correlation between root length density and yields of cotton at the flower-boll and wadding stages. The regression between irrigation amount and yield of cotton can be expressed as y = -0.0026x2+18.015x-24845 (R2 = 0.959). It showed that the irrigation volume of 3,464.4 m3/hm2 led to op-timal root length density. The yield of cotton was 6,360 .8 kg/hm2 under that amount of irrigation.展开更多
High salinity in soil can prevent root growth of most plants. To investigate soil salinity dynamics under drip irrigation with mulch film (DI) and its effects on cotton root length, we conducted field experiments in...High salinity in soil can prevent root growth of most plants. To investigate soil salinity dynamics under drip irrigation with mulch film (DI) and its effects on cotton root length, we conducted field experiments in saline soil based on a monolith method using flooding irrigation with mulch film (FI) as a control at the Korla Experimental Station of the Xinjiang Academy of Agricultural Sciences, China in 2009 and 2010. The results showed that the total root length decreased 120 days after sowing (DAS) under DI, and was mainly centered in the 0-30 cm soil layer and at distances of 30-70 cm from the drip-lines. There was almost complete overlap in the area of root length decline and salt accumulation. In the soil depth of 0-30 cm and at distances of 30-70 cm from the drip-lines at 110 to 160 DAS in 2009 and 171 DAS in 2010, the electrical conductivity (EC) in all soil samples was at least 3 mS/cm and in some cases exceeded 5 mS/cm under DI treatment. However, EC barely exceeded 3 mS/cm and no reduction in root length was observed under FI treatment. Correlation analysis of soil EC and root length density indicated that the root length declined when the soil EC exceeded 2.8 mS/cm. The main reason for the decrease of root length in cotton under DI was localized accumulation of salinity.展开更多
The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Fi...The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Field Observation and Research Station for Oasis Farmland Ecosystem in Aksu of Xinjiang in 2008.Water balance method was adopted to study the water requirement and water consumption law of cotton under mulched drip irrigation in Tarim Irrigated Area.Statistical analysis of experimental data of irrigation indicates that the relationship between yield of cotton and irrigation presents a quadratic parabola.We fit the model of cotton water production on the basis of field experimental data of cotton.And the analysis on water saving benefit of cotton under mulched drip irrigation was done.Results indicate that water requirements for the irrigated cotton are 543 mm in Tarim Irrigated Area.The water requirements of seedling stage is 252 mm,budding stage is 186 mm,bolling stage is 316 mm and wadding stage is 139 mm.the irrigation amount determines the spatial distribution of soil moisture and water consumption during cotton life cycle.However,water consumption at different growth stages was inconsistent with irrigation.Quantitatively,the water consumed by cotton decreases upon the increase of irrigation amount.From the perspective of water saving,the maximal water use efficiency can reach 3 091 m3/ha.But the highest cotton yield needs 3464 m3/ha irrigation water.In summary,compared to the conventional drip irrigation,a number of benefits in water saving and yield increase were observed when using plastic mulch.At the same amount of irrigation,the cotton yield with plastic mulch was 30.2% higher than conventional approaches,and the efficiency of water utilization increased by30.2%.While at the same yield level,29.3% water was saved by using plastic mulch,and the efficiency increased by 41.5%.展开更多
Drip irrigation of biological agents is an important green pathway to prevent diseases in Xinjiang cotton fields, especially soil-borne diseases. In order to clear the suitable dosage of different biological agents fo...Drip irrigation of biological agents is an important green pathway to prevent diseases in Xinjiang cotton fields, especially soil-borne diseases. In order to clear the suitable dosage of different biological agents for controlling cotton Verticillium wilt, field split plot experiment was designed to research the control effects of Bacillus subtilis WP (15, 30 and 45 kg/hm^2), Shibeijian Trichoderma harzianum (15, 18 and 24 kg/hm^2), Yufeng“99”(15, 22.5 and 30 kg/hm^2), Zhongnonglukang (30, 45 and 60 kg/hm^2) and Athomin (45, 60 and 75 kg/hm^2) on cotton Vertillium wilt in 2016 and 2017. The disease control effect against cotton Verticillium wilt, cotton growth, cotton yield and fiber quality were compared and analyzed by biometrical method. The results showed that five biological agents significantly reduced the incidence rate and disease index of cotton Verticillium wilt, and the average control effect reached 33.50%-74.94%. The control effect of Shibeijian T. harzianum dripped at the dosage of 18 kg/hm^2 was significantly higher than that dripped at 15 and 24 kg/hm^2. There was no significant difference between different application dosages in Athomin treatment. The control effect of the remaining three agents had significantly positive correlation with application dosage. Five biological agents had obvious promotion effects on cotton growth, and the cotton height, width of the top fourth leaf, fruit branch number and boll number per plant were increased in different levels. The cotton height and width of the top fourth leaf had no obvious changes with the increase of dosage, while the fruit branch number and boll number increased with the increasing dosage. Meanwhile, these biological agents significantly advanced the maturity of cotton. Except for Athomin treatment, the cotton seed yield in other treatments showed an increasing trend and increased significantly with the increasing dosage. The cotton fiber length and fiber breaking tenacity were improved slightly, but cotton quality had not been improved conspicuously. Therefore, according to disease control effect, cotton growth and yield performance, the suitable drip dosage of biological agents were as follows: Yufeng "99" 30 kg/hm^2, Zhongnonglukang 60 kg/hm^2, B. subtilis WP 45.0 kg/hm^2, and Shibejian T. harzianum 18.0 kg/hm^2. The drip dosage of Athomin still needs to be further studied.展开更多
This study aimed to explore the optimum drip irrigation belt arrangement mode for mechanically-harvested cotton in Xinjiang. The Xinluzao 61 was selected as the experiment material, and the effects of two different dr...This study aimed to explore the optimum drip irrigation belt arrangement mode for mechanically-harvested cotton in Xinjiang. The Xinluzao 61 was selected as the experiment material, and the effects of two different drip irrigation modes(6 cotton rows with 2 drip irrigation pipes under plastic film, 6 cotton rows with 3 drip irrigation pipes under plastic film) on the growth and yield of Xinluzao 61 were investigated under mechanical harvest. The results showed that under the mode of 6 cotton rows with 2 drip irrigation pipes, the growth rate of edge-row cotton was lower in the early growth period, and its emergence rate and agronomic traits were all lower than those of the interior-row cotton; under the mode of 6 cotton rows and 3 drip irrigation pipes, the difference in cotton growth between edge and interior rows was smaller. The yield and benefit under the mode of 6 cotton rows with 3 drip irrigation pipes were higher than those under the mode of 6 cotton rows and 2 drip irrigation pipes by 255 kg/hm^2 and 1 500 yuan/hm^2, respectively. Therefore, the cultivation mode of 6 cotton rows with 3 drip irrigation pipes under plastic film should be promoted in the production.展开更多
Under-mulch-drip irrigation is an advanced irrigation technique, which combines plastic-film-covered cultivation with drip irrigation. The influence of different norms of under-mulch-drip irrigation on diurnal changes...Under-mulch-drip irrigation is an advanced irrigation technique, which combines plastic-film-covered cultivation with drip irrigation. The influence of different norms of under-mulch-drip irrigation on diurnal changes of photosynthetic rates and chlorophyll fluorescence parameters of cotton was studied, in order to understand the physiological mechanisms of water-saving and high-yielding farming in Xinjiang. Results indicated that limited drip irrigation, which supplies 2/3 of 375 m3 ha-1, the widely-used irrigation norm in cotton cultivation in Xinjiang, caused a water deficit in cotton field. Compared with the proper drip irrigation, the leaf photosynthetic rate under limited drip irrigation decreased during 9:00 to 11:00 a. m. , and was significantly suppressed at midday, and then recovered afterwards. Using the chlorophyll fluorescence method, the absorption, transfer and transformation features of solar radiation by cotton leaf were investigated. Under limited drip irrigation, the variable fluorescence (Fv) and primary light transfer efficiency of PSII (Fv/Fm) in cotton leaves were reduced because of the high light intensities and high temperatures at noon, and the decrease in XinluzaoS was greater than that in Xinluzao6. Therefore, it could be concluded that Xinluzao6 has a higher drought-tolerance, and the Fv/Fm ratio could be used as a drought-resistance index for cotton.展开更多
The brackish water is an important potential water source and has frequently been utilized to drip-irrigate cotton due to the water shortage in the arid region of Xinjiang,northwestern of China.The brackish water is u...The brackish water is an important potential water source and has frequently been utilized to drip-irrigate cotton due to the water shortage in the arid region of Xinjiang,northwestern of China.The brackish water is usually saline water with salinity ranging from 1 g/L to 5 g/L,which is widely distributed in this area,so the reasonable use of that brackish water may not only play a vital role in the local agricultural production,but also save plenty of freshwater.However,irrigation with brackish water usually causes the reduction of crop yield and soil salinization which can negatively impact plants through three major components:osmotic,nutritious and toxic stresses.Therefore,a field experiment,with eight different time-series irrigation modes using brackish water(3.5±0.2)g/L and freshwater(<1 g/L),beneath a combined film and drip-irrigation system was carried out to study the changes of soil salt content and cotton yield aiming to search for a balanced method during the 2 cotton growing seasons in 2012 and 2013.The results indicated that the time-series irrigation modes determined the soil salinity and moisture distribution based on observed spatio-temporal distribution of water content and electric conductivity,and soil salinity generally gathered at the depth of 0-10 cm and 60 cm of soil with the increase of irrigation quota.Moreover,the results demonstrated that the yields of cotton which was grown using brackish water and freshwater were better than those only using freshwater and the soil salinity with reasonable irrigation timing was not accumulated obviously.展开更多
While fertigation can increase fertilizer use efficiency, there is an uncertainly as to whether the fertilizer should be introduced at the beginning of the irrigation or at the end, or introduced during irrigation. Ou...While fertigation can increase fertilizer use efficiency, there is an uncertainly as to whether the fertilizer should be introduced at the beginning of the irrigation or at the end, or introduced during irrigation. Our objective was to determine the effect of different fertigation schemes on nitrogen (N) uptake and N use efficiency (NUE) in cotton plants. A pot experiment was conducted under greenhouse conditions in year 2004 and 2005. According to the application timing of nitrogen (N) fertilizer solution and water (W) involved in an irrigation cycle, four nitrogen fertigation schemes [nitrogen applied at the beginning of the irrigation cycle (N-W), nitrogen applied at the end of the irrigation cycle (W-N), nitrogen applied in the middle of the irrigation cycle (W-N-W) and nitrogen applied throughout the irrigation cycle (N&W)] were employed in a completely randomized design with four replications. Cotton was grown in plastic containers with a volume of 84 l, which were filled with a clay loam soil and fertilized with 6.4 g of N per pot as unlabeled and 15N-labeled urea for 2004 and 2005, respectively. Plant total dry matter (DM) and N content in N-W was significantly higher than in N&W in both seasons, but these were not consistent for W-N and W-N-W treatments. In year 2005, a significantly higher nitrogen derived from fertilizer (NDFF) for the whole plant was found in W-N and N-W than that in W-N-W and N&W. Fertigation scheme had a consistent effect on total NUE: N-W had the highest NUE for the whole plant, but this was not significantly different from W-N. Treatments W-N and W-N-W had similar total NUE, and N&W had the lowest total NUE. After harvesting, the total residual fertilizer N in the soil was highest in W-N, lowest in N-W, but this was not significantly different from N&W and W-N-W treatments. Total residual NO3-N in the soil in N&W and W-N treatments was 20.7 and 21.2% higher than that in N W, respectively. The total 15 N recovery was not statistically significant between the four fertigation schemes. In this study, the fertigation scheme N-W (nitrogen applied at the beginning of an irrigation cycle) increased DM accumulation, N uptake and NUE of cotton. This study indicates that Nitrogen application at the beginning of an irrigation cycle has an advantage on N uptake and NUE of cotton. Therefore, NUE could be enhanced by optimizing fertilization schemes with drip irrigation.展开更多
The matching relationship between the spatial structure of cotton cluster root systems and soil-wetting patterns under mulched drip irrigation forms the theoretical basis for the technical design of mulched drip irrig...The matching relationship between the spatial structure of cotton cluster root systems and soil-wetting patterns under mulched drip irrigation forms the theoretical basis for the technical design of mulched drip irrigation.A 2-year field experiment was conducted,in which different soil-wetting patterns were produced by setting different emitter discharge rates.The envelopes of cotton cluster root length densities were derived using the topological methodology and used to examine the effects of different soil-wetting patterns on the spatial structure of root systems and water uptake capacity within row spaces.The results showed that the root systems in rows of cotton grown under narrower and deeper soil-wetting patterns exhibited a single-peak distribution,while those under wider and shallower soil-wetting patterns exhibited a two-peak distribution.Furthermore,cotton rows grown near mulch edges experienced lower moisture stress,and wider and shallower soil-wetting patterns contributed to greater root growth rates in the vertical direction and resulted in more even potential water uptake capacities.The findings of this study revealed that wider and shallower soil-wetting patterns were more desirable for mulched drip irrigation of cotton and should be considered in the technical design of drip irrigation systems.展开更多
基金supported by the National Natural Science Foundation of China(40771097)the Special Fund of Industrial(Agriculture)Research for Public Welfare of China(200903001)
文摘More and more attention is being focused on saline water utilization in irrigation due to the shortage of fresh water to agriculture in many regions. For purpose of reducing the risks of using of saline water for irrigation, the mechanism of soil moisture and salinity distribution and transport should be well understood for developing optimum management strategies. In this paper, field experiments were carried out at Junggar Basin, China, to study the effects of drip irrigation water quality and drip tape arrangement on distribution of soil salinity and soil moisture. Six treatments were designed, including two drip tape arrangement modes and three irrigation water concentration levels (0.24, 4.68, and 7.42 dS m^-l). Results showed that, soil moisture content (SMC) directly beneath the drip tape in all treatments kept a relatively high value about 18% before boll opening stage; the SMC in the narrow strip in single tape arrangement (Ms) plot was obviously lower than that in the double tapes arrangement (Md) plot, indicating that less sufficient water was supplied under the same condition of irrigation depth, but there was no significant reduction in yield. Mulching had not significant influence on salt accumulation but the drip tape arrangement, under the same condition of irrigation water depth and quality, compared with Md, Ms reduced salt accumulation in root zone and brought about relatively high cotton yield.
基金supported by the National Basic Research Program of China (2009CB421302)the National Natural Science Foundation of China (41071026,51069017)
文摘A field experiment was carried out to investigate the effects of different emitter discharge rates under drip irrigation on soil salinity distribution and cotton yield in an extreme arid region of Tarim River catchment in Northwest China. Four treatments of emitter discharge rates, i.e. 1.8, 2.2, 2.6 and 3.2 L/h, were designed under drip irrigation with plastic mulch in this paper. The salt distribution in the range of 70-cm horizontal distance and 100-cm vertical distance from the emitter was measured and analyzed during the cotton growing season. The soil salinity is expressed in terms of electrical conductivity (dS/m) of the saturated soil extract (ECe), which was measured using Time Domain Reflector (TDR) 20 times a year, including 5 irrigation events and 4 measured times before/after an irrigation event. All the treatments were repeated 3 times. The groundwater depth was observed by SEBA MDS Dipper 3 automatically at three experimental sites. The results showed that the order of reduction in averaged soil salinity was 2.6 L/h 〉 2.2 L/h 〉 1.8 L/h 〉 3.2 L/h after the completion of irrigation for the 3-year cotton growing season. Therefore, the choice of emitter discharge rate is considerably important in arid silt loam. Usually, the ideal emitter discharge rate is 2.4-3.0 L/h for soil desalinization with plastic mulch, which is advisable mainly because of the favorable salt leaching of silt loam and the climatic conditions in the studied arid area. Maximum cotton yield was achieved at the emitter discharge rate of 2.6 L/h under drip irrigation with plastic mulch in silty soil at the study site. Hence, the emitter discharge rate of 2.6 L/h is recommended for drip irrigation with plastiic mulch applied in silty soil in arid regions.
基金supported by the National Natural Science Foundation of China (50569004)
文摘The relation between soil water content and the growth of cotton root was studied for the scheme of field water and cotton yield under mulched drip irrigation. Based on the field experiments, three treatments of soil water content were conducted with 90%, 75%θf, and 60%θf (θfis field water capacity). Cotton roots and root-shoot ratio were studied with digging method, and the soil moisture was observed with TDR (time domain reflector), and cotton yield was measured. The results indicated that the growth of cotton root accorded with Logistic growth curve in the three treatments, the cotton root grew quickly and its weight was very high under 75%θf because of the suitable soil water condition, while grew slowly and its weight was lower under 90%θf due to water moisture beyond the suitable condition, and the root weight was in between under 60%θf For the three water treatments, the cotton root weight decreased with soil depth, and decreased more significantly in deeper soil layer with the soil moisture increasing. And the ratio of cotton root weight in 0-30 cm soil layer to the total root weight was the highest under 75%θf. The cotton root system was distributed mainly in the soil of narrow row and wide row mulched with plastic film, and little in the soil outside plastic film. The weight of cotton root was the highest in the soil of narrow row or wide row mulched with plastic film under 75%θf. Root-shoot ratio decreased with the soil moisture increasing. The soil water content affected cotton yields, and cotton yield was the highest under 75%θf. The higher soil moisture level is unfavorable to the growth of cotton root system and yield of cotton under mulched drip irrigation.
基金supported by the National 973 project (2009CB421302)the National Project (2007BAC03A0604)the key National Natural Science Foundation (40830640)
文摘Effects of soil moisture on cotton root length density (total root length per unit soil volume) and yield under drip irrigation with plastic mulch were studied through field experiments. The results indicate that spatial distributions of root length density of cotton under various water treatments were basically similar. Horizontally, both root length densities of cotton in wide and narrow rows were similar, and higher than that between mulches. Vertically, root length density of cotton decreased with increasing soil depth. The distribution of root length density is different under different irrigation treatments. In conditions of over-irrigation, the root length density of cotton between mulches would increase. However, it would decrease in both the wide rows and narrow rows. The mean root length density of cotton increased with increasing irrigation water. Water stress caused the root length density to increase in lower soil layers. There is a significant correlation between root length density and yields of cotton at the flower-boll and wadding stages. The regression between irrigation amount and yield of cotton can be expressed as y = -0.0026x2+18.015x-24845 (R2 = 0.959). It showed that the irrigation volume of 3,464.4 m3/hm2 led to op-timal root length density. The yield of cotton was 6,360 .8 kg/hm2 under that amount of irrigation.
基金funded by the National Natural Science Foundation of China (31000252, 31201681)the Science and Technology Supporting Project of the Department of Science and Technology of Xinjiang, China (200840102-08)
文摘High salinity in soil can prevent root growth of most plants. To investigate soil salinity dynamics under drip irrigation with mulch film (DI) and its effects on cotton root length, we conducted field experiments in saline soil based on a monolith method using flooding irrigation with mulch film (FI) as a control at the Korla Experimental Station of the Xinjiang Academy of Agricultural Sciences, China in 2009 and 2010. The results showed that the total root length decreased 120 days after sowing (DAS) under DI, and was mainly centered in the 0-30 cm soil layer and at distances of 30-70 cm from the drip-lines. There was almost complete overlap in the area of root length decline and salt accumulation. In the soil depth of 0-30 cm and at distances of 30-70 cm from the drip-lines at 110 to 160 DAS in 2009 and 171 DAS in 2010, the electrical conductivity (EC) in all soil samples was at least 3 mS/cm and in some cases exceeded 5 mS/cm under DI treatment. However, EC barely exceeded 3 mS/cm and no reduction in root length was observed under FI treatment. Correlation analysis of soil EC and root length density indicated that the root length declined when the soil EC exceeded 2.8 mS/cm. The main reason for the decrease of root length in cotton under DI was localized accumulation of salinity.
基金Supported by 973 Project(2009CB421302)Innovation Project of Chinese Academy of Sciences(KZCX2-YW-127)Youth Science Foundation of China(41401025)
文摘The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Field Observation and Research Station for Oasis Farmland Ecosystem in Aksu of Xinjiang in 2008.Water balance method was adopted to study the water requirement and water consumption law of cotton under mulched drip irrigation in Tarim Irrigated Area.Statistical analysis of experimental data of irrigation indicates that the relationship between yield of cotton and irrigation presents a quadratic parabola.We fit the model of cotton water production on the basis of field experimental data of cotton.And the analysis on water saving benefit of cotton under mulched drip irrigation was done.Results indicate that water requirements for the irrigated cotton are 543 mm in Tarim Irrigated Area.The water requirements of seedling stage is 252 mm,budding stage is 186 mm,bolling stage is 316 mm and wadding stage is 139 mm.the irrigation amount determines the spatial distribution of soil moisture and water consumption during cotton life cycle.However,water consumption at different growth stages was inconsistent with irrigation.Quantitatively,the water consumed by cotton decreases upon the increase of irrigation amount.From the perspective of water saving,the maximal water use efficiency can reach 3 091 m3/ha.But the highest cotton yield needs 3464 m3/ha irrigation water.In summary,compared to the conventional drip irrigation,a number of benefits in water saving and yield increase were observed when using plastic mulch.At the same amount of irrigation,the cotton yield with plastic mulch was 30.2% higher than conventional approaches,and the efficiency of water utilization increased by30.2%.While at the same yield level,29.3% water was saved by using plastic mulch,and the efficiency increased by 41.5%.
基金Supported by National Key Research and Development Program(2016yfd02004005-4)Modern Agricultural Science and Technology Development Plan of Corps(2015AC008)
文摘Drip irrigation of biological agents is an important green pathway to prevent diseases in Xinjiang cotton fields, especially soil-borne diseases. In order to clear the suitable dosage of different biological agents for controlling cotton Verticillium wilt, field split plot experiment was designed to research the control effects of Bacillus subtilis WP (15, 30 and 45 kg/hm^2), Shibeijian Trichoderma harzianum (15, 18 and 24 kg/hm^2), Yufeng“99”(15, 22.5 and 30 kg/hm^2), Zhongnonglukang (30, 45 and 60 kg/hm^2) and Athomin (45, 60 and 75 kg/hm^2) on cotton Vertillium wilt in 2016 and 2017. The disease control effect against cotton Verticillium wilt, cotton growth, cotton yield and fiber quality were compared and analyzed by biometrical method. The results showed that five biological agents significantly reduced the incidence rate and disease index of cotton Verticillium wilt, and the average control effect reached 33.50%-74.94%. The control effect of Shibeijian T. harzianum dripped at the dosage of 18 kg/hm^2 was significantly higher than that dripped at 15 and 24 kg/hm^2. There was no significant difference between different application dosages in Athomin treatment. The control effect of the remaining three agents had significantly positive correlation with application dosage. Five biological agents had obvious promotion effects on cotton growth, and the cotton height, width of the top fourth leaf, fruit branch number and boll number per plant were increased in different levels. The cotton height and width of the top fourth leaf had no obvious changes with the increase of dosage, while the fruit branch number and boll number increased with the increasing dosage. Meanwhile, these biological agents significantly advanced the maturity of cotton. Except for Athomin treatment, the cotton seed yield in other treatments showed an increasing trend and increased significantly with the increasing dosage. The cotton fiber length and fiber breaking tenacity were improved slightly, but cotton quality had not been improved conspicuously. Therefore, according to disease control effect, cotton growth and yield performance, the suitable drip dosage of biological agents were as follows: Yufeng "99" 30 kg/hm^2, Zhongnonglukang 60 kg/hm^2, B. subtilis WP 45.0 kg/hm^2, and Shibejian T. harzianum 18.0 kg/hm^2. The drip dosage of Athomin still needs to be further studied.
基金Supported by Key Agricultural Program of Xinjiang Production and Construction Corps(2011BA001)Agricultural Science and Technology Achievement Transformation Fund of Ministry of Science and Technology(2014GB2G410111)~~
文摘This study aimed to explore the optimum drip irrigation belt arrangement mode for mechanically-harvested cotton in Xinjiang. The Xinluzao 61 was selected as the experiment material, and the effects of two different drip irrigation modes(6 cotton rows with 2 drip irrigation pipes under plastic film, 6 cotton rows with 3 drip irrigation pipes under plastic film) on the growth and yield of Xinluzao 61 were investigated under mechanical harvest. The results showed that under the mode of 6 cotton rows with 2 drip irrigation pipes, the growth rate of edge-row cotton was lower in the early growth period, and its emergence rate and agronomic traits were all lower than those of the interior-row cotton; under the mode of 6 cotton rows and 3 drip irrigation pipes, the difference in cotton growth between edge and interior rows was smaller. The yield and benefit under the mode of 6 cotton rows with 3 drip irrigation pipes were higher than those under the mode of 6 cotton rows and 2 drip irrigation pipes by 255 kg/hm^2 and 1 500 yuan/hm^2, respectively. Therefore, the cultivation mode of 6 cotton rows with 3 drip irrigation pipes under plastic film should be promoted in the production.
基金supported by the National Natural Science Foundation of China(39960037).
文摘Under-mulch-drip irrigation is an advanced irrigation technique, which combines plastic-film-covered cultivation with drip irrigation. The influence of different norms of under-mulch-drip irrigation on diurnal changes of photosynthetic rates and chlorophyll fluorescence parameters of cotton was studied, in order to understand the physiological mechanisms of water-saving and high-yielding farming in Xinjiang. Results indicated that limited drip irrigation, which supplies 2/3 of 375 m3 ha-1, the widely-used irrigation norm in cotton cultivation in Xinjiang, caused a water deficit in cotton field. Compared with the proper drip irrigation, the leaf photosynthetic rate under limited drip irrigation decreased during 9:00 to 11:00 a. m. , and was significantly suppressed at midday, and then recovered afterwards. Using the chlorophyll fluorescence method, the absorption, transfer and transformation features of solar radiation by cotton leaf were investigated. Under limited drip irrigation, the variable fluorescence (Fv) and primary light transfer efficiency of PSII (Fv/Fm) in cotton leaves were reduced because of the high light intensities and high temperatures at noon, and the decrease in XinluzaoS was greater than that in Xinluzao6. Therefore, it could be concluded that Xinluzao6 has a higher drought-tolerance, and the Fv/Fm ratio could be used as a drought-resistance index for cotton.
基金We appreciate the financial support of National Key Development Program(2017YFC0404304,2017YFC0404303)the National Natural Science Fund Project(41601579)+2 种基金the application foundation research project of Bingtuan(2016AG003)Excellent Youth Teachers Program of Xinjiang Production&Construction Corps(CZ027204)National Science&Technology Program(2014BAC14B01).
文摘The brackish water is an important potential water source and has frequently been utilized to drip-irrigate cotton due to the water shortage in the arid region of Xinjiang,northwestern of China.The brackish water is usually saline water with salinity ranging from 1 g/L to 5 g/L,which is widely distributed in this area,so the reasonable use of that brackish water may not only play a vital role in the local agricultural production,but also save plenty of freshwater.However,irrigation with brackish water usually causes the reduction of crop yield and soil salinization which can negatively impact plants through three major components:osmotic,nutritious and toxic stresses.Therefore,a field experiment,with eight different time-series irrigation modes using brackish water(3.5±0.2)g/L and freshwater(<1 g/L),beneath a combined film and drip-irrigation system was carried out to study the changes of soil salt content and cotton yield aiming to search for a balanced method during the 2 cotton growing seasons in 2012 and 2013.The results indicated that the time-series irrigation modes determined the soil salinity and moisture distribution based on observed spatio-temporal distribution of water content and electric conductivity,and soil salinity generally gathered at the depth of 0-10 cm and 60 cm of soil with the increase of irrigation quota.Moreover,the results demonstrated that the yields of cotton which was grown using brackish water and freshwater were better than those only using freshwater and the soil salinity with reasonable irrigation timing was not accumulated obviously.
基金国家科技支撑计划项目"棉花持续优质高效生产技术体系研究与示范"(2006BAD21B02)新疆维吾尔自治区"十一五"重大科技专项"棉花生产关键技术开发,集成与示范"(200731133)+2 种基金the National Natural Science Foundation of China (grant no30460062)the Program for Changjiang Scholars and Innovative Resaerch Team in the University (grant noIRT0412)the Key Teacher Foundation of Shihezi University (grant noNX02002)
文摘While fertigation can increase fertilizer use efficiency, there is an uncertainly as to whether the fertilizer should be introduced at the beginning of the irrigation or at the end, or introduced during irrigation. Our objective was to determine the effect of different fertigation schemes on nitrogen (N) uptake and N use efficiency (NUE) in cotton plants. A pot experiment was conducted under greenhouse conditions in year 2004 and 2005. According to the application timing of nitrogen (N) fertilizer solution and water (W) involved in an irrigation cycle, four nitrogen fertigation schemes [nitrogen applied at the beginning of the irrigation cycle (N-W), nitrogen applied at the end of the irrigation cycle (W-N), nitrogen applied in the middle of the irrigation cycle (W-N-W) and nitrogen applied throughout the irrigation cycle (N&W)] were employed in a completely randomized design with four replications. Cotton was grown in plastic containers with a volume of 84 l, which were filled with a clay loam soil and fertilized with 6.4 g of N per pot as unlabeled and 15N-labeled urea for 2004 and 2005, respectively. Plant total dry matter (DM) and N content in N-W was significantly higher than in N&W in both seasons, but these were not consistent for W-N and W-N-W treatments. In year 2005, a significantly higher nitrogen derived from fertilizer (NDFF) for the whole plant was found in W-N and N-W than that in W-N-W and N&W. Fertigation scheme had a consistent effect on total NUE: N-W had the highest NUE for the whole plant, but this was not significantly different from W-N. Treatments W-N and W-N-W had similar total NUE, and N&W had the lowest total NUE. After harvesting, the total residual fertilizer N in the soil was highest in W-N, lowest in N-W, but this was not significantly different from N&W and W-N-W treatments. Total residual NO3-N in the soil in N&W and W-N treatments was 20.7 and 21.2% higher than that in N W, respectively. The total 15 N recovery was not statistically significant between the four fertigation schemes. In this study, the fertigation scheme N-W (nitrogen applied at the beginning of an irrigation cycle) increased DM accumulation, N uptake and NUE of cotton. This study indicates that Nitrogen application at the beginning of an irrigation cycle has an advantage on N uptake and NUE of cotton. Therefore, NUE could be enhanced by optimizing fertilization schemes with drip irrigation.
基金This study was supported by the National Natural Science Foundation of China(Grant No.51790533(a major project)and No.51709266)the National Key Research and Development Program of China(Grant No.2017YFC0403303)the Central Public-interest Scientific Institution Basal Research Fund(Farmland Irrigation Research Institute,CAAS)(FIRI2016-19 and FIRI2016-16).
文摘The matching relationship between the spatial structure of cotton cluster root systems and soil-wetting patterns under mulched drip irrigation forms the theoretical basis for the technical design of mulched drip irrigation.A 2-year field experiment was conducted,in which different soil-wetting patterns were produced by setting different emitter discharge rates.The envelopes of cotton cluster root length densities were derived using the topological methodology and used to examine the effects of different soil-wetting patterns on the spatial structure of root systems and water uptake capacity within row spaces.The results showed that the root systems in rows of cotton grown under narrower and deeper soil-wetting patterns exhibited a single-peak distribution,while those under wider and shallower soil-wetting patterns exhibited a two-peak distribution.Furthermore,cotton rows grown near mulch edges experienced lower moisture stress,and wider and shallower soil-wetting patterns contributed to greater root growth rates in the vertical direction and resulted in more even potential water uptake capacities.The findings of this study revealed that wider and shallower soil-wetting patterns were more desirable for mulched drip irrigation of cotton and should be considered in the technical design of drip irrigation systems.