The density and viscosity of 1-butyl-3-methylimidazolium tetrafluoroborate[BMIM][BF4]and 1-butyl-3-methylimidazolium chloride[BMIM][Cl]and their binary mixtures within the temperatures from 303.15 K to323.15 K and at ...The density and viscosity of 1-butyl-3-methylimidazolium tetrafluoroborate[BMIM][BF4]and 1-butyl-3-methylimidazolium chloride[BMIM][Cl]and their binary mixtures within the temperatures from 303.15 K to323.15 K and at ambient pressure were determined in this work.The temperature dependences of density and viscosity were satisfactorily described with the linear model and the Vogel-Tammann-Fulcher type equation,respectively.The molar volume and viscosity of binary IL mixtures were predicted through ideal mixing rules showing that almost null deviations for IL mixtures were observed and their mixing was remarkably close to linear ideal behavior in the molar volumes,while comparatively large errors in viscosity occurred.Additionally,the molar volume of the investigated pure ILs and their mixtures could well be predicted by a predictive model presented by Valderrama et al.(Fluid Phase Equilib.,275(2009)145).展开更多
The accurate reduced potential energies for two binary gas mixtures including benzene- methanol and methane-tetrafluoromethane at low density have been obtained by direct inversion of the viscosity collision integral ...The accurate reduced potential energies for two binary gas mixtures including benzene- methanol and methane-tetrafluoromethane at low density have been obtained by direct inversion of the viscosity collision integral equations. The kinetic theory along with the extended principle of corresponding-states has been used to calculate the viscosity and dif- fusion coefficients over a wide range of temperature and composition. Good agreements between calculated and experimental data are obtained.展开更多
Densities and viscosities were measured as a function of composition for binary liquid mixture of diethylerie glycol monoethyl ether [CH3CH2O(CH2)2O(CH2)2OH] + water from 293.15 to 333.15 K at atmospheric pressur...Densities and viscosities were measured as a function of composition for binary liquid mixture of diethylerie glycol monoethyl ether [CH3CH2O(CH2)2O(CH2)2OH] + water from 293.15 to 333.15 K at atmospheric pressure, with a capillary pycnometer and Ubbelohde capillary viscometer respectively. From the experimental data, the excess molar volume V^E, viscosity deviation △η, and the excess energy of activation for viscous flow △G^*E were calculated. These data were correlated by the Redlich-Kister type equations to obtain the coefficients and standard deviations. The results showed a strong molecular interaction between diethylene glycol monoethyl ether and water.展开更多
The article considers the movement of a mixture of air and raw cotton through a pipeline with a variable cross-section as a multi-speed heterogeneous medium. The regularities of the movement of components inside the p...The article considers the movement of a mixture of air and raw cotton through a pipeline with a variable cross-section as a multi-speed heterogeneous medium. The regularities of the movement of components inside the pipeline, the equation of change in the porosity of cotton, air pressure and component velocities in time and along the transportation line are obtained. It was found that in the initial 20 - 25 m part of the pneumatic transport pipe there is a sharp decrease in pressure and air flow velocity, while the speed of cotton increases rapidly due to which there is a strong deformation of cotton stretching under the influence of aerodynamic force, which occurs due to the difference in the velocities of the components of the mixture, as a result of which the cotton loosens, and its porosity increases intensively.展开更多
Physical properties including refractive index, density, viscosity and conductivity for binary mixtures of l-butyl- 3-methyl imidazolium chloride ([BMIM]CI) and different organic solvents at 298.15 K have been inves...Physical properties including refractive index, density, viscosity and conductivity for binary mixtures of l-butyl- 3-methyl imidazolium chloride ([BMIM]CI) and different organic solvents at 298.15 K have been investigated. Ex- cess molar volumes have been calculated and obtained data has been fitted by the Redlich-Kister equation. The density and refractive index were found to increase with increasing concentration of [BMIM]CI, however, excep- tions do exist as in the case of dimethyl sulfoxide (DMSO)/[BMIM]CI. For DMSO/[BMIM]CI, the density decreases with increasing concentration. The addition of different organic solvents was able to disrupt the interactions within mixtures, leading to free mobility of ions. The free mobility of ions has been found to enhance conductivity and decrease viscosity to varying extents in all mixtures studied. It has been observed that solubility parameters, dielectric constants and composition of the solvents used play a vital role in determining the resultant properties. The data obtained will play an important role in understanding the effect of the addition of organic solvents in ILs to enhance their applicability.展开更多
Fully atomistic molecular dynamics (MD) simulations at 293, 303 and 313 K have been performed for the four- component liquid crystal mixture, E7, using the software package Material Studio. Order parameters and orie...Fully atomistic molecular dynamics (MD) simulations at 293, 303 and 313 K have been performed for the four- component liquid crystal mixture, E7, using the software package Material Studio. Order parameters and orientational time correlation functions (TCFs) were calculated from MD trajectories. The rotational viscosity coefficients (RVCs) of the mixture were calculated using the Nemtsov-Zakharov and Fialkowski methods based on statistical-mechanical approaches. Temperature dependences of RVC and density were discussed in detail. Reasonable agreement between the simulated and experimental values was found.展开更多
Density, viscosity and sound velocity of six binary liquid mixtures of methanol, ethanol, propanol, butanol, hexanol and octanol with 1,4-dioxane have been measured over the entire range of composition at temperature ...Density, viscosity and sound velocity of six binary liquid mixtures of methanol, ethanol, propanol, butanol, hexanol and octanol with 1,4-dioxane have been measured over the entire range of composition at temperature 303.15K. From the experimental densities, viscosities and sound velocity, the excess molar volume (<i>V<sup>E</sup></i>), deviation in viscosity (Δ<i>η</i>) and deviation in isentropic compressibility (Δ<i>K<sub>S</sub></i>) have been calculated. The results have been used to discuss the nature and strength of intermolecular interactions in these mixtures.展开更多
The biological variety is mainly connected with presence of the field ecosites,which determine the mechanism of interaction(the symbiosis,pathogenesis,and etc.) that differ typically of such
We study the shock structure and the sub-shock formation in a binary mixture of rarefied polyatomic gases,considering the dissipation only due to the dynamic pressure.We classify the regions depending on the concentra...We study the shock structure and the sub-shock formation in a binary mixture of rarefied polyatomic gases,considering the dissipation only due to the dynamic pressure.We classify the regions depending on the concentration and the Mach number for which there may exist the sub-shock in the profile of shock structure in one or both constituents or not for prescribed values of the mass ratio of the constituents and the ratios of the specific heats.We compare the regions with the ones of the corresponding mixture of Eulerian gases and perform the numerical calculations of the shock structure for typical cases previously classified and confirm whether sub-shocks emerge.展开更多
The flow fields inside conventional and rotary hydrocyclones were simulated respectively. In these simulations, water only and oil-water mixture, with distinctly different viscosities, were used as continuous phases. ...The flow fields inside conventional and rotary hydrocyclones were simulated respectively. In these simulations, water only and oil-water mixture, with distinctly different viscosities, were used as continuous phases. Simulation results agreed well with the experimental measurements. Simulation results showed that the conventional hydrocyclone could effectively separate sand from water, but could not separate sand from high viscosity water/oil emulsion. This showed that the viscosity of continuous phases influenced greatly both the separation efficiency and the flow field distribution in the conventional hydrocyclone. For high viscosity oil/water sand dispersion (mixture), the rotary hydrocyclone has better separation performance than the conventional one, with a more favorable flow field distribution.展开更多
The dynamics of unsteady magnetohydrodynamic convective fluid flow with radiation and thermophoresis of particles past a vertical porous plate moving through a binary mixture in an optically thin environment is invest...The dynamics of unsteady magnetohydrodynamic convective fluid flow with radiation and thermophoresis of particles past a vertical porous plate moving through a binary mixture in an optically thin environment is investigated. The approximate form of the radiative heat flux is considered as the fourth power of temperature. Chemical reaction that occurs as the chemically reacting fluid flow through binary mixture is accounted for in energy and species concentration equations. Exponential space dependent heat source is introduced to generate additional heat energy across the fluid domain. The corresponding influence of heat energy is properly accounted for. It is assumed that viscosity and thermal conductivity vary as a linear function of temperature. The governing boundary layer equations are converted to nonlinear ordinary differential equations using similarity variables. A novel method of obtaining root finding starting with three guesses in shooting techniques is presented. The corresponding nonlinear coupled ordinary differential equations is solved numerically by shooting technique along with quadratic interpolation scheme. Graphical results of the dimensionless velocity, temperature and concentration distributions are shown for certain pertinent parameters controlling the fluid flow. The quadratic interpolation method is found to produce better estimated values of , which satisfy the degree of accuracy and proportional to the physical quantities.展开更多
基金Supported by the National Basic Research Program of China(2015CB251401)the National Natural Science Foundation of China(21878025,21776069,21476070).
文摘The density and viscosity of 1-butyl-3-methylimidazolium tetrafluoroborate[BMIM][BF4]and 1-butyl-3-methylimidazolium chloride[BMIM][Cl]and their binary mixtures within the temperatures from 303.15 K to323.15 K and at ambient pressure were determined in this work.The temperature dependences of density and viscosity were satisfactorily described with the linear model and the Vogel-Tammann-Fulcher type equation,respectively.The molar volume and viscosity of binary IL mixtures were predicted through ideal mixing rules showing that almost null deviations for IL mixtures were observed and their mixing was remarkably close to linear ideal behavior in the molar volumes,while comparatively large errors in viscosity occurred.Additionally,the molar volume of the investigated pure ILs and their mixtures could well be predicted by a predictive model presented by Valderrama et al.(Fluid Phase Equilib.,275(2009)145).
文摘The accurate reduced potential energies for two binary gas mixtures including benzene- methanol and methane-tetrafluoromethane at low density have been obtained by direct inversion of the viscosity collision integral equations. The kinetic theory along with the extended principle of corresponding-states has been used to calculate the viscosity and dif- fusion coefficients over a wide range of temperature and composition. Good agreements between calculated and experimental data are obtained.
文摘Densities and viscosities were measured as a function of composition for binary liquid mixture of diethylerie glycol monoethyl ether [CH3CH2O(CH2)2O(CH2)2OH] + water from 293.15 to 333.15 K at atmospheric pressure, with a capillary pycnometer and Ubbelohde capillary viscometer respectively. From the experimental data, the excess molar volume V^E, viscosity deviation △η, and the excess energy of activation for viscous flow △G^*E were calculated. These data were correlated by the Redlich-Kister type equations to obtain the coefficients and standard deviations. The results showed a strong molecular interaction between diethylene glycol monoethyl ether and water.
文摘The article considers the movement of a mixture of air and raw cotton through a pipeline with a variable cross-section as a multi-speed heterogeneous medium. The regularities of the movement of components inside the pipeline, the equation of change in the porosity of cotton, air pressure and component velocities in time and along the transportation line are obtained. It was found that in the initial 20 - 25 m part of the pneumatic transport pipe there is a sharp decrease in pressure and air flow velocity, while the speed of cotton increases rapidly due to which there is a strong deformation of cotton stretching under the influence of aerodynamic force, which occurs due to the difference in the velocities of the components of the mixture, as a result of which the cotton loosens, and its porosity increases intensively.
基金the National Natural Science Foundation of China(51273041)
文摘Physical properties including refractive index, density, viscosity and conductivity for binary mixtures of l-butyl- 3-methyl imidazolium chloride ([BMIM]CI) and different organic solvents at 298.15 K have been investigated. Ex- cess molar volumes have been calculated and obtained data has been fitted by the Redlich-Kister equation. The density and refractive index were found to increase with increasing concentration of [BMIM]CI, however, excep- tions do exist as in the case of dimethyl sulfoxide (DMSO)/[BMIM]CI. For DMSO/[BMIM]CI, the density decreases with increasing concentration. The addition of different organic solvents was able to disrupt the interactions within mixtures, leading to free mobility of ions. The free mobility of ions has been found to enhance conductivity and decrease viscosity to varying extents in all mixtures studied. It has been observed that solubility parameters, dielectric constants and composition of the solvents used play a vital role in determining the resultant properties. The data obtained will play an important role in understanding the effect of the addition of organic solvents in ILs to enhance their applicability.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60578035 and 60736042)
文摘Fully atomistic molecular dynamics (MD) simulations at 293, 303 and 313 K have been performed for the four- component liquid crystal mixture, E7, using the software package Material Studio. Order parameters and orientational time correlation functions (TCFs) were calculated from MD trajectories. The rotational viscosity coefficients (RVCs) of the mixture were calculated using the Nemtsov-Zakharov and Fialkowski methods based on statistical-mechanical approaches. Temperature dependences of RVC and density were discussed in detail. Reasonable agreement between the simulated and experimental values was found.
文摘Density, viscosity and sound velocity of six binary liquid mixtures of methanol, ethanol, propanol, butanol, hexanol and octanol with 1,4-dioxane have been measured over the entire range of composition at temperature 303.15K. From the experimental densities, viscosities and sound velocity, the excess molar volume (<i>V<sup>E</sup></i>), deviation in viscosity (Δ<i>η</i>) and deviation in isentropic compressibility (Δ<i>K<sub>S</sub></i>) have been calculated. The results have been used to discuss the nature and strength of intermolecular interactions in these mixtures.
文摘The biological variety is mainly connected with presence of the field ecosites,which determine the mechanism of interaction(the symbiosis,pathogenesis,and etc.) that differ typically of such
基金supported by the JSPS KAKENHI Grant No.JP19K04204(S.T.).
文摘We study the shock structure and the sub-shock formation in a binary mixture of rarefied polyatomic gases,considering the dissipation only due to the dynamic pressure.We classify the regions depending on the concentration and the Mach number for which there may exist the sub-shock in the profile of shock structure in one or both constituents or not for prescribed values of the mass ratio of the constituents and the ratios of the specific heats.We compare the regions with the ones of the corresponding mixture of Eulerian gases and perform the numerical calculations of the shock structure for typical cases previously classified and confirm whether sub-shocks emerge.
文摘The flow fields inside conventional and rotary hydrocyclones were simulated respectively. In these simulations, water only and oil-water mixture, with distinctly different viscosities, were used as continuous phases. Simulation results agreed well with the experimental measurements. Simulation results showed that the conventional hydrocyclone could effectively separate sand from water, but could not separate sand from high viscosity water/oil emulsion. This showed that the viscosity of continuous phases influenced greatly both the separation efficiency and the flow field distribution in the conventional hydrocyclone. For high viscosity oil/water sand dispersion (mixture), the rotary hydrocyclone has better separation performance than the conventional one, with a more favorable flow field distribution.
文摘The dynamics of unsteady magnetohydrodynamic convective fluid flow with radiation and thermophoresis of particles past a vertical porous plate moving through a binary mixture in an optically thin environment is investigated. The approximate form of the radiative heat flux is considered as the fourth power of temperature. Chemical reaction that occurs as the chemically reacting fluid flow through binary mixture is accounted for in energy and species concentration equations. Exponential space dependent heat source is introduced to generate additional heat energy across the fluid domain. The corresponding influence of heat energy is properly accounted for. It is assumed that viscosity and thermal conductivity vary as a linear function of temperature. The governing boundary layer equations are converted to nonlinear ordinary differential equations using similarity variables. A novel method of obtaining root finding starting with three guesses in shooting techniques is presented. The corresponding nonlinear coupled ordinary differential equations is solved numerically by shooting technique along with quadratic interpolation scheme. Graphical results of the dimensionless velocity, temperature and concentration distributions are shown for certain pertinent parameters controlling the fluid flow. The quadratic interpolation method is found to produce better estimated values of , which satisfy the degree of accuracy and proportional to the physical quantities.