期刊文献+
共找到1,986篇文章
< 1 2 100 >
每页显示 20 50 100
Functional Optical Fiber Sensors Detecting Imperceptible Physical/Chemical Changes for Smart Batteries
1
作者 Yiding Li Li Wang +3 位作者 Youzhi Song Wenwei Wang Cheng Lin Xiangming He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期268-308,共41页
The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal st... The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal state.The battery should“sense its internal physical/chemical conditions”,which puts strict requirements on embedded sensing parts.This paper summarizes the application of advanced optical fiber sensors in lithium-ion batteries and energy storage technologies that may be mass deployed,focuses on the insights of advanced optical fiber sensors into the processes of one-dimensional nano-micro-level battery material structural phase transition,electrolyte degradation,electrode-electrolyte interface dynamics to three-dimensional macro-safety evolution.The paper contributes to understanding how to use optical fiber sensors to achieve“real”and“embedded”monitoring.Through the inherent advantages of the advanced optical fiber sensor,it helps clarify the battery internal state and reaction mechanism,aiding in the establishment of more detailed models.These advancements can promote the development of smart batteries,with significant importance lying in essentially promoting the improvement of system consistency.Furthermore,with the help of smart batteries in the future,the importance of consistency can be weakened or even eliminated.The application of advanced optical fiber sensors helps comprehensively improve the battery quality,reliability,and life. 展开更多
关键词 Smart battery Advanced embedded optical fiber sensor Battery internal physical/chemical state Quality-reliability-life characteristic
下载PDF
Physical and Chemical Properties of Horns Sheaths Particles for the Manufacture of Composite Materials
2
作者 Tawe Laynde Zakari Yaou +2 位作者 Karga Tapsia Lionel Konai Noel Danwe Raidandi 《Journal of Materials Science and Chemical Engineering》 2024年第5期1-9,共9页
Salvaged cow horns from slaughterhouses have been transformed into fine particles for a physical characterization that has led us to determine the humidity rate (2.34% ± 0.054%), the actual density situated betwe... Salvaged cow horns from slaughterhouses have been transformed into fine particles for a physical characterization that has led us to determine the humidity rate (2.34% ± 0.054%), the actual density situated between 0.586 g/cm<sup>3</sup> and 0.732 g/cm<sup>3</sup>, the swelling rate (12%), and one chemical characterization that permitted us to determine the rate of dry matters (97.05%), of mineral matters (2.5%), of protein matters (94.52%). From these weak values, it can easily be seen that cow horn case doesn’t absorb much water and improve the mechanical characteristics of the composite;the high rate of protein shows that keratin which is the structural molecule favors its gripping as reinforcing element in the manufacturing of composite materials. 展开更多
关键词 HORNS fibers Polymer Loads Physical Properties chemical Composition
下载PDF
Influence of Solvent onto Chemical Extraction of America-Type Coconut (Coco nucifera L.) Fbers: Analysis of Physicochemical, Mechanical and Morphological Properties
3
作者 Delphine Korgai Gandai Zara Haman +4 位作者 Djoda Pagore Frederic Memtine Ndong Augustin Abdourhamane Nsangou Niraka Blaise Hambate Gomdje Valery 《Journal of Textile Science and Technology》 2024年第3期64-81,共18页
In this study, the natural fibers from Coconuts of the species Coco nucifera L. were Chemically extracted in different solvents such as sodium hydroxide (SH), acetone (AC) and sodium hydroxide-acetone (SHA) for their ... In this study, the natural fibers from Coconuts of the species Coco nucifera L. were Chemically extracted in different solvents such as sodium hydroxide (SH), acetone (AC) and sodium hydroxide-acetone (SHA) for their applications in the textile industries. Structural, morphological and physico-mechanical characterizations such as X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanned electron microscopy (SEM), measurements of density, Young’s modulus, water absorption rate and humidity were evaluated. The XRD and FTIR results show that Coco nucifera L. fibers contains type I cellulose. Mechanical characterizations were also carried out. These results show that by varying the different solvents used, the physico-chemical, mechanical and morphological properties of the fibers change, which implies that the solvent has an influence on the properties of these fibers. The fibers extracted by the sodium hydroxide-acetone mixture have a linear density of 1.636, the percentage of water absorption is 62.428%, the percentage of moisture absorption 9.605% compared to other values in the literature shows that this solvent mixture improves the properties of coconut fibers which contain type I cellulose. The tensile stress is 0.013 GPa, the percentage strain is 49.836% and the Young’s modulus is 0.114 GPa as well as the percentage elongation show that these fibers are elasto-plastic. The values obtained mean that these fibers are suitable for use in textiles. 展开更多
关键词 chemical Extraction Cellulose Coco nucifera L. fibers ELASTO-PLASTIC Textiles
下载PDF
Effect of chemical vapor infiltration treatment on the wave-absorbing performance of carbon fiber/cement composites 被引量:4
4
作者 Kezhi Li Chuang Wang Hejun Li Lingjun Guo Jihua Lu 《Journal of University of Science and Technology Beijing》 CSCD 2008年第6期808-815,共8页
Short carbon fibers were treated at high temperatures around 1100℃ through chemical vapor infiltration technology. A thinner layer ofpyrocarbon was deposited on the fiber surface. The dispersion of carbon fibers in a... Short carbon fibers were treated at high temperatures around 1100℃ through chemical vapor infiltration technology. A thinner layer ofpyrocarbon was deposited on the fiber surface. The dispersion of carbon fibers in a cement matrix and the mechanical properties of carbon fiber/cement composites were investigated by scanning electron microscopy (SEM) and other tests. The reflec- tivity of electromagnetic waves by the composites was measured in the frequency range of 8.0-18 GHz for different carbon fiber contents of 0.2wt%, 0.4wt%, 0.6wt%, and 1.0wt%. The results show that the reflectivity tends to increase with the increase of fiber content above 0.4wt%. The minimum reflectivity is -19.3 dB and the composites exhibit wave-absorbing performances. After pyrocarbon is deposited on the fiber, all the refiectivity data are far greater. They are all above -10 dB and display mainly wave-reflecting performances. 展开更多
关键词 carbon fibers chemical vapor infiltration CEMENT REFLECTIVITY wave-absorbing property
下载PDF
Physical-Chemical and Mechanical Characterization of the Bast Fibers of <i>Triumfetta cordifolia</i>A.Rich. from the Equatorial Region of Cameroon 被引量:3
5
作者 Armel Edwige Mewoli César Segovia +4 位作者 Fabien Betene Ebanda Atangana Ateba Pierre Marcel Anicet Noah Benoit Ndiwe Abel Emmanuel Njom 《Journal of Minerals and Materials Characterization and Engineering》 2020年第4期163-176,共14页
The project consists in the implementation of a biocomposite based on tannin resin and natural rubber matrices with the bast fibres of <i>Triumfetta cordifolia </i>A.Rich.“<i>Okong</i>” from ... The project consists in the implementation of a biocomposite based on tannin resin and natural rubber matrices with the bast fibres of <i>Triumfetta cordifolia </i>A.Rich.“<i>Okong</i>” from the equatorial region of Cameroon as reinforcement. A study of this still little known fibre is necessary. This paper evaluates the physico-chemical and mechanical characteristics of the fibers. The fibers are extracted by us. A series of experiments is conducted for this purpose: morphological observation with a scanning electron microscope (SEM);density evaluation with a helium pycnometer;absorption rate evaluation according to the protocol available in the literature, Fourier Transform Infrared Spectrometry (FT-IR), chemical composition evaluation according to ASTM 1972 and ASTM 1977 standards, thermogravimetric analysis (TGA) and tensile tests on fiber bundles according to NF T25-501-3. The results show that the fiber is made up of several elementary fibers with oval cross-sections. A density of 1.477g/cm<sup>3</sup> close to that of hemp. These fibers have a water absorption rate of 342.5%, which correlates with the presence of free hydroxyl functional groups obtained from the spectrometry study (FT-IR). Chemical analysis reveals that the fiber is made up of celluloses (44.4%), hemicelluloses (30.8%), lignins (18.9%), pectins (3.3%), waxes (0.5%) and minerals (2.1%). In addition, we learn that the fibers studied dehydrate at 11.49%, showinga notable thermal stability around 235°C with a peak thermal decomposition of cellulose located at 420°C. In terms of mechanical behaviour, the results reveal that the fibers offer a Young’s modulus in traction of 12.4 ± 6.9 GPa, a tensile strength of 526 ± 128 MPa and an elongation at break of 2.25%. The information thus obtained makes it possible to place these fibers in the same fiber group as flax and jute. They could therefore be used for the same types of applications. They also inform us that these fibers can withstand the temperatures of composite shaping by thermocompression. 展开更多
关键词 Triumfetta cordifolia fibers MORPHOLOGY chemical Analysis Thermal Degradation Mechanical Behavior
下载PDF
A Case Study of Search Engine on World Wide Web for Chemical Fiber Engineering 被引量:1
6
作者 张利 邵世煌 +1 位作者 曾献辉 尹美华 《Journal of Donghua University(English Edition)》 EI CAS 2001年第3期113-116,共4页
Search engine is an effective approach to promote the service quality of the World Wide Web. On terms of the analysis of search engines at home and abroad, the developing principle of search engines is given according... Search engine is an effective approach to promote the service quality of the World Wide Web. On terms of the analysis of search engines at home and abroad, the developing principle of search engines is given according to the requirement of Web information for chemical fiber engineering. The implementation method for the communication and dynamic refreshment of information on home page of the search engines are elaborated by using programming technology of Active Server Page 3.0 (ASP3.0). The query of chemical fiber information and automatic linking of chemical fiber Web sites can be easily realized by the developed search engine under Internet environment according to users' requirement. 展开更多
关键词 chemical fiber SEARCH engine dynamic refreshment automatic query.
下载PDF
Fibrous TiO_2 prepared by chemical vapor deposition using activated carbon fibers as template via adsorption,hydrolysis and calcinations 被引量:2
7
作者 Hui-na YANG Li-fen LIU +1 位作者 Feng-lin YANG Jimmy C. YU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第7期981-987,共7页
TiO2 fibers were prepared via alternatively introducing water vapor and Ti precursor carried by N2 to an APCVD (chemical vapor deposition under atmospheric pressure) reactor at ≤200 ℃. Activated carbon fibers (A... TiO2 fibers were prepared via alternatively introducing water vapor and Ti precursor carried by N2 to an APCVD (chemical vapor deposition under atmospheric pressure) reactor at ≤200 ℃. Activated carbon fibers (ACFs) were used as templates for deposition and later removed by calcinations. The obtained catalysts were characterized by scanning electron micros- copy (SEM), transmission electron microscopy (TEM), Brunauer, Emmett and Teller (BET) and X-ray diffraction (XRD) analysis The pores within TiO2 fibers included micro-range and meso-range, e.g., 7 nm, and the specific surface areas for TiO2 fibers were 141 m^2/g and 148 m^2/g for samples deposited at 100 ℃ and 200℃ (using ACFI700 as template), respectively. The deposition temperature significantly influenced TiO2 morphology. The special advantages of this technique for preparing porous nano-material include no consumption of organic solvent in the process and easy control of deposition conditions and speeds. 展开更多
关键词 chemical vapor deposition (CVD) Porous material Activated carbon fiber (ACF)
下载PDF
Chemicals Used in Polymeric Material Coated Waste Paper Composites
8
作者 Zübeyde Bülbül Birol Üner 《Journal of Materials Science and Chemical Engineering》 2023年第5期1-10,共10页
In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), ... In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), Titanate and Silanyl (Vinyltriethoxysilane) were added waste paper. Composite boards were pressed and cut in 1 × 30 × 30 cm. In order to identify some properties of the produced boards, experimental works were applied according to the standards. In conclusion, bending stress reduced with filler materials and chemicals was reduced even more than the bending stress except for some experimental groups. In addition, it was observed that the coupling chemicals increased the bending strength and modulus of elasticity compared to the fillers. 展开更多
关键词 Matching chemicals Paper Composites Filling Materials POLYMERS Coupling Agents Paper fibers
下载PDF
Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors 被引量:1
9
作者 Minjie Shi Hangtian Zhu +2 位作者 Cheng Yang Jing Xu Chao Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第7期1-10,共10页
The emerging one-dimensional wire-shaped supercapacitors(SCs)with structural advantages of low mass/volume structural advantages hold great interests in wearable electronic engineering.Although graphene fiber(GF)has f... The emerging one-dimensional wire-shaped supercapacitors(SCs)with structural advantages of low mass/volume structural advantages hold great interests in wearable electronic engineering.Although graphene fiber(GF)has full of vigor and tremendous potentiality as promising linear electrode for wire-shaped SCs,simultaneously achieving its facile fabrication process and satisfactory electrochemical performance still remains challenging to date.Herein,two novel types of graphene hybrid fibers,namely ferroferric oxide dots(FODs)@GF and N-doped carbon polyhedrons(NCPs)@GF,have been proposed via a simple and efficient chemical reduction-induced fabrication.Synergistically coupling the electroactive units(FODs and NCPs)with conductive graphene nanosheets endows the fiber-shaped architecture with boosted electrochemical activity,high flexibility and structural integrity.The resultant FODs@GF and NCPs@GF hybrid fibers as linear electrodes both exhibit excellent electrochemical behaviors,including large volumetric specific capacitance,good rate capability,as well as favorable electrochemical kinetics in ionic liquid electrolyte.Based on such two linear electrodes and ionogel electrolyte,a highperformance wire-shaped SC is effectively assembled with ultrahigh volumetric energy density(26.9 mW·cm^(-3)),volumetric power density(4900 mW·cm^(-3))and strong durability over 10,000 cycles under straight/bending states.Furthermore,the assembled wire-shaped SC with excellent flexibility and weavability acts as efficient energy storage device for the application in wearable electronics. 展开更多
关键词 NANOTECHNOLOGY chemical processes Ionic liquids Hybrid fiber Wearable electronics
下载PDF
Oxidation Modification of Polyacrylonitrile-Based Carbon Fiber and Its Electro-Chemical Performance as Marine Electrode for Electric Field Test 被引量:8
10
作者 ZAI Xuerong LIU Ang +2 位作者 TIAN Yuhua CHAI Fanggang FU Yubin 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第2期361-368,共8页
A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characteriz... A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characterized by scanning electron microscope,Fourier transform infrared spectra and contact angle.Cyclic voltammetry and Tafel curves have been used to study its electro-chemical performances.Two identical electrodes in sea water as the electric field sensor will swiftly respond to applied electric field which causes positive and negative ions to move in opposite direction,resulting in a electric potential difference(ΔE).Test result indicates that the offset potential is typically below 1 m V with a drift of 60-170μVd^-1.Typical self noise level is 1.07 nV√Hz^(1/2)@1 Hz.The electric field response indicates that the modified electrode pair shows better response to AC sine signal of amplitude and frequency(5 mV and 1 mHz)respectively than its blank.The electric field response model of the modified electrodes is creatively presented according to its electric double layer capacitance and Faraday pseudo-capacitance.Many advantages of the carbon fiber electric field electrode will make it have potential application prospect. 展开更多
关键词 carbon fiber electrode electro-chemical oxidation modification electro-chemical performance electric field response electric field test
下载PDF
Microstructure of carbon fiber preform and distribution of pyrolytic carbon by chemical vapor infiltration 被引量:5
11
作者 陈建勋 黄伯云 《中国有色金属学会会刊:英文版》 CSCD 2004年第4期733-737,共5页
The carbon/carbon composites were made by chemical vapor infiltration(CVI) with needled felt preform. The distribution of the pyrolytic carbon in the carbon fib er preform was studied by polarized light microscope(PLM... The carbon/carbon composites were made by chemical vapor infiltration(CVI) with needled felt preform. The distribution of the pyrolytic carbon in the carbon fib er preform was studied by polarized light microscope(PLM) and scanning electroni c microscope(SEM). The experimental results indicate that the amount of pyrolyti c carbon deposited on the surface of chopped carbon fiber is more than that on t he surface of long carbon fiber. The reason is the different porosity between th e layer of chopped carbon fiber and long carbon fiber. The carbon precursor gas which passes through the part of chopped carbon fibers decomposes and deposits o n the surface of chopped carbon fiber. The pyrolytic carbon on the surface of lo ng carbon fibers is produced by the carbon precursor gas diffusing from the chop ped fiber and the Z-d fiber. Uniform pore distribution and porosity in preform are necessary for producing C/C composites with high properties. 展开更多
关键词 碳/碳复合材料 热解碳 碳纤维 多孔材料 CVI
下载PDF
Effect of Shrinkage Reducing Agent and Steel Fiber on the Fluidity and Cracking Performance of Ultra-High Performance Concrete
12
作者 Yong Wan Li Li +4 位作者 Jiaxin Zou Hucheng Xiao Mengdi Zhu Ying Su Jin Yang 《Fluid Dynamics & Materials Processing》 EI 2024年第9期1941-1956,共16页
Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects ... Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects of different types of cementitious materials,chemical shrinkage-reducing agents(SRA)and steel fiber(SF)were assessed.Compared with M2-UHPC and M3-UHPC,M1-UHPC was found to have better fluidity and shrinkage cracking performance.Moreover,different SRA incorporation methods,dosage and different SF types and aspect ratios were implemented.The incorporation of SRA and SF led to a decrease in the fluidity of UHPC.SRA internal content of 1%(NSRA-1%),SRA external content of 1%(WSRA-1%),STS-0.22 and STE-0.7 decreased the fluidity of UHPC by 3.3%,8.3%,9.2%and 25%,respectively.However,SRA and SF improved the UHPC shrinkage cracking performance.NSRA-1%and STE-0.7 reduced the shrinkage value of UHPC by 40%and 60%,respectively,and increased the crack resistance by 338%and 175%,respectively.In addition,the addition of SF was observed to make the microstructure of UHPC more compact,and the compressive strength and flexural strength of 28 d were increased by 26.9%and 19.9%,respectively. 展开更多
关键词 Ultra-high performance concrete chemical shrinkage reducing agent steel fiber shrinkage cracking repair and reinforcement
下载PDF
The Application of Air-flow to the Technological Process of Chemical Fiber
13
作者 崔启亮 陈明 《Journal of China Textile University(English Edition)》 EI CAS 1999年第3期112-114,共3页
The air-flow’s states and ways acted on the technological process of chemical fiber are summed up, which includes chip drying, spinning quenching as well as airjet texturing (air texturing, tangling texturing and bul... The air-flow’s states and ways acted on the technological process of chemical fiber are summed up, which includes chip drying, spinning quenching as well as airjet texturing (air texturing, tangling texturing and bulked continuous filament (BCF)),and the effect of air-flow on the process and quality of chemical fiber is studied,and the action of mechanics and heat on the bulked continuous filament are calculated. 展开更多
关键词 AIR - flow chemical fiber TECHNOLOGICAL process
下载PDF
Chemical Modification of Silk Fibers with Ethylene Glycol Dimethacrylate
14
作者 陈国强 周翔 《Journal of Donghua University(English Edition)》 EI CAS 2002年第1期20-24,共5页
Silk fibers have been grafted with ethylene glycol dimethacrylate (EGDMA) and characteristics of the grafted silk fibers were analyzed in relation to the graft yield on the basis of the tensile properties, dyeing beha... Silk fibers have been grafted with ethylene glycol dimethacrylate (EGDMA) and characteristics of the grafted silk fibers were analyzed in relation to the graft yield on the basis of the tensile properties, dyeing behaviour, durability during laundering and solubility of the specimen in NaOH solution. The amount of the acid dye absorbed by the fibers decreased with increasing graft yield, while the value of rating for washing fastness on silk fibers was almost unchanged by the graft treatment. The breaking loads of the fiber were almost unchanged whereas rigidity of the fibers increased after graft treatment. Graft treatment enhanced silk fiber durability during laundering and in NaOH solution. 展开更多
关键词 SILK fibers chemical Modification ETHYLENE GLYCOL dimethacrylate.
下载PDF
Optimization and Characterization of Combined Degumming Process of Typha angustata L. Stem Fibers
15
作者 Sana Rezig Foued Khoffi +2 位作者 Mounir Jaouadi Asma Eloudiani Slah Msahli 《Journal of Renewable Materials》 EI CAS 2024年第6期1071-1086,共16页
Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to... Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to study their physical,chemical,and mechanical properties.In this context,the present study relates to the extraction,characterization,and optimization of Typha angustata L.stem fibers.For this purpose,desirability functions and response surface methodology were applied to simultaneously optimize the diameter(D),linear density(LD);yield(Y),lignin fraction(L),and tenacity(T)of Typha stem fibers.Typha stems have been subjected to both alkali(NaOH)and enzymatic(pectinex ultra-SPL)treatments.Three levels of process variables including enzyme concentration(10,15,and 20 ml/L)and treatment duration(10,15,and 20 days)were used to design the experiments according to the factorial design.Experimental results were examined by analysis of variance and fitted to second order polynomial model using multiple regression analysis.The Derringer’s desirability function released that the values of process variables generating optimized diameter,linear density,yield,lignin ratio and tenacity are 20 ml/L and 20 days for concentration of pectinex ultra-SPL enzyme and treatment duration,respectively.Confirmation was performed and high degree of correlation was found between the experimental and statistical values.Moreover,the morphological structure has been investigated by the scanning electron microscope,showing a crenelated structure of ultimate fiber bundles of cellulose composing the Typha fiber.Compared to Typha stem non-treated fibers(TSNTF),Typha stem combined treated fibers(TSCTF),brings to improve mechanical properties.This change in mechanical properties is affected by modifying the fiber structure showing alpha cellulose of(66.86%)and lignin ratio of(10.83%)with a crystallinity index of(58.47%). 展开更多
关键词 Typha angustata L.stems fibers combined treatment optimization process desirability function chemical and physical properties morphological structure
下载PDF
Edge Blunting of Hard Alloy Cutter Blade for Cutting Chemical Fibers
16
作者 原一高 朱世根 《Journal of Donghua University(English Edition)》 EI CAS 2006年第2期26-30,共5页
Through the establishment mathematical model and experimental verification, the course of blunting of hard alloy cutter blade for cutting chemical fiber have been studied. The result shows that the cutter blade sharpn... Through the establishment mathematical model and experimental verification, the course of blunting of hard alloy cutter blade for cutting chemical fiber have been studied. The result shows that the cutter blade sharpness would be greatly reduced in the course of fiber cutting as the initial edge radius and edge angle, the linear wear, and the notch depth of cutter blade are increased. The blunting of cutter blade in the course of fiber cutting can be divided into four stages. The reducing degree of the sharpness is different in different stages. The linear wear of cutter blade is almost negligible. The blunting of the cutter blade is directly related to the depth of notches generated on the cutting edge. The deeper the notch, the more the cutter blade sharpness would be decreased. 展开更多
关键词 chemical fiber cutter blades SHARPNESS cutter edge blunting.
下载PDF
Preparation and Characterization of Raw and Chemically Modified Sponge-Gourd Fiber Reinforced Polylactic Acid Biocomposites
17
作者 Taimur -Al-Mobarak Md. Abdul Gafur Md. Forhad Mina 《Materials Sciences and Applications》 2018年第2期281-304,共24页
This research work has been undertaken to fabricate environmentally friendly biocomposites for biomedical and household applications. Sponge-gourd fibers (SGF) obtained from Luffa cylindrica plant were chemically trea... This research work has been undertaken to fabricate environmentally friendly biocomposites for biomedical and household applications. Sponge-gourd fibers (SGF) obtained from Luffa cylindrica plant were chemically treated separately using 5 and 10 wt% NaOH, acetic anhydride and benzoyl chloride solutions. SGF reinforced polylactic acid (PLA) biocomposites were fabricated using melt compounding technique. Surface morphological, structural, mechanical and thermal properties, as well as antibacterial activities of raw and chemically modified SGF reinforced PLA (SGF-PLA) composites were characterized by field emission scanning electron microscopy, Fourier transform infrared spectrometry, X-ray diffractometry, universal testing method, thermogravimetry, and Kirby-Bauer agar diffusion method, respectively. Surface morphology indicates that after treatment of fibers, the interfacial adhesion between PLA and fibers is improved. X-ray diffractometry result shows that chemical treatment of fibers improves the crystallinity and exhibits new chemical bond formation in the composites. After chemical treatment, compressive strength of the composites is found to increase by 10% - 35%. The thermal stability of the treated fiber reinforced composites is also found to increase significantly. The composites have no antibacterial activities and no cytotoxic effect on non-cancer cell line. Soil burial test has confirmed that the composites are biodegradable. Benzoyl chloride treatment of fibers shows superior mechanical properties and enhances thermal stability among the composites. 展开更多
关键词 Sponge-Gourd fiber Polylactic Acid chemical MODIFICATION BIOCOMPOSITES ANTIBACTERIAL Activities
下载PDF
Physico-Chemical and Thermal Characterization of a Lignocellulosic Fiber, Extracted from the Bast of <i>Cola lepidota</i>Stem 被引量:2
18
作者 Ndoumou Belinga Rémy Legrand Meva’a Lucien +3 位作者 Ouagne Pierre Betene Ebanda Fabien Noah Pierre Marcel Atangana Ateba Jean 《Journal of Minerals and Materials Characterization and Engineering》 2020年第5期377-392,共16页
In this research work, fiber extracted from the bark of <i>Cola</i> <i>lepidota</i> (<i>CL</i>) plant, grown in the flora of Southern part of Cameroon, was investigated for composit... In this research work, fiber extracted from the bark of <i>Cola</i> <i>lepidota</i> (<i>CL</i>) plant, grown in the flora of Southern part of Cameroon, was investigated for composites reinforcement. The investigation was carried via evaluation of <span>water absorption capacity, moisture content, real density, porosity, chemical composition, chemical structure and thermal behaviour. It was discovered that the new fiber has relatively low moisture content and water absorption capacity similar to those of other investigated natural fibers such as flax, sisal, coconut, hemp and jute. Its porosity was found appropriate for composite production and the fiber was found to be thermally stable up to 230°C, with maximum degradation temperature of 325°C. The main constituents of the fibre include cellulose, hemicellulose and lignin. In conclusion, based on the properties investigated, this fiber is considered suitable for composite manufacture. 展开更多
关键词 Cola lepidota fiber Thermal Stability Physico-chemical Characteristics FTIR-ATR Liber STEM
下载PDF
Effect of Combined Chemical Treatment on Physical, Mechanical and Chemical Properties of Posidonia Fiber
19
作者 Saoussen Zannen Lassaad Ghali +1 位作者 Mohamed Taher Halimi Mohamed Ben Hassen 《Advances in Materials Physics and Chemistry》 2016年第11期275-290,共17页
The aim of this study is to investigate the effect of chemical treatment method on the properties of Posidonia fibers. The chemical treatment which is carried out is a combined hydrogen peroxide and sodium hydroxide t... The aim of this study is to investigate the effect of chemical treatment method on the properties of Posidonia fibers. The chemical treatment which is carried out is a combined hydrogen peroxide and sodium hydroxide treatment. First, an investigation of the treatment processes was undertaken. Secondly, the physical properties (linear density, diameter and ratio length per diameter), the mechanical properties (tenacity, elongation) and chemical properties (FT-IR spectra and X ray diffraction) of posidonia fibers were investigated. The optimum operating conditions were identified using a factorial design. 展开更多
关键词 Posidonia fiber Combined Treatment Physical Properties Mechanical Properties chemical Properties
下载PDF
Nation's Chemical Fiber Industry Expected to Rev Up
20
《China Oil & Gas》 CAS 2000年第4期50-51,共2页
关键词 Nation’s chemical fiber Industry Expected to Rev Up REV
下载PDF
上一页 1 2 100 下一页 到第
使用帮助 返回顶部