Based on the dynamical theory of multi-body systems with nonholonomic constraints and an algorithm for complementarity problems, a numerical method for the multi-body systems with two-dimensional Coulomb dry friction ...Based on the dynamical theory of multi-body systems with nonholonomic constraints and an algorithm for complementarity problems, a numerical method for the multi-body systems with two-dimensional Coulomb dry friction and nonholonomic constraints is presented. In particular, a wheeled multi-body system is considered. Here, the state transition of stick-slip between wheel and ground is transformed into a nonlinear complementarity problem (NCP). An iterative algorithm for solving the NCP is then presented using an event-driven method. Dynamical equations of the multi-body system with holonomic and nonholonomic constraints are given using Routh equations and a con- straint stabilization method. Finally, an example is used to test the proposed numerical method. The results show some dynamical behaviors of the wheeled multi-body system and its constraint stabilization effects.展开更多
An approach is proposed for modeling and anal- yses of rigid multibody systems with frictional translation joints and driving constraints. The geometric constraints of translational joints with small clearance are tre...An approach is proposed for modeling and anal- yses of rigid multibody systems with frictional translation joints and driving constraints. The geometric constraints of translational joints with small clearance are treated as bilat- eral constraints by neglecting the impact between sliders and guides. Firstly, the normal forces acting on sliders, the driv- ing constraint forces (or moments) and the constraint forces of smooth revolute joints are all described by complementary conditions. The frictional contacts are characterized by a set- valued force law of Coulomb's dry friction. Combined with the theory of the horizontal linear complementarity problem (HLCP), an event-driven scheme is used to detect the transi- tions of the contact situation between sliders and guides, and the stick-slip transitions of sliders, respectively. And then, all constraint forces in the system can be computed easily. Secondly, the dynamic equations of multibody systems are written at the acceleration-force level by the Lagrange multiplier technique, and the Baumgarte stabilization method is used to reduce the constraint drift. Finally, a numerical example is given to show some non-smooth dynamical behaviors of the studied system. The obtained results validate the feasibility of algorithm and the effect of constraint stabilization.展开更多
The elastic support/dry friction damper is a type of damper which is used for active vibration control in a rotor system.To establish the analytical model of this type of damper,a two-dimensional friction model-ball/p...The elastic support/dry friction damper is a type of damper which is used for active vibration control in a rotor system.To establish the analytical model of this type of damper,a two-dimensional friction model-ball/plate model was proposed.By using this ball/plate model,a dynamics model of rotor with elastic support/dry friction dampers was established and experimentally verified.Moreover,the damping performance of the elastic support/dry friction damper was studied numerically with respect to some variable parameters.The numerical study shows that the damping performance of the elastic support/dry friction damper is closely related to the stiffness distribution of the rotor-support system,the damper location,the pressing force between the moving and stationary disk,the friction coefficient,the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk.In general,the damper should be located on an elastic support which has a large vibration amplitude in order to achieve a better damping performance,and the more vibration energy in this elastic support concentrates,the better performance of the damper will be.The larger the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk are,the better performance of the damper will be.There will be an optimal value of the friction force at which the damper performs best.展开更多
In this paper,we investigate the equilibrium stability of a Filippov-type system having multiple stick regions based upon a smooth and discontinuous(SD) oscillator with dry friction.The sets of equilibrium states of...In this paper,we investigate the equilibrium stability of a Filippov-type system having multiple stick regions based upon a smooth and discontinuous(SD) oscillator with dry friction.The sets of equilibrium states of the system are analyzed together with Coulomb friction conditions in both( f_n,f_s) and(x,˙x) planes.In the stability analysis,Lyapunov functions are constructed to derive the instability for the equilibrium set of the hyperbolic type and La Salle's invariance principle is employed to obtain the stability of the nonhyperbolic type.Analysis demonstrates the existence of a thick stable manifold and the interior stability of the hyperbolic equilibrium set due to the attractive sliding mode of the Filippov property,and also shows that the unstable manifolds of the hyperbolic-type are that of the endpoints with their saddle property.Numerical calculations show a good agreement with the theoretical analysis and an excellent efficien y of the approach for equilibrium states in this particular Filippov system.Furthermore,the equilibrium bifurcations are presented to demonstrate the transition between the smooth and the discontinuous regimes.展开更多
This work studies a mathematical model describing the static process of contact between a piezoelectric body and a thermally-electrically conductive foundation. The behavior of the material is modeled with a thermo-el...This work studies a mathematical model describing the static process of contact between a piezoelectric body and a thermally-electrically conductive foundation. The behavior of the material is modeled with a thermo-electro-elastic constitutive law. The contact is described by Signorini's conditions and Tresca's friction law including the electrical and thermal conductivity conditions. A variational formulation of the model in the form of a coupled system for displacements, electric potential, and temperature is de- rived. Existence and uniqueness of the solution are proved using the results of variational inequalities and a fixed point theorem.展开更多
A flexible beam with large overall rotating motion impacting with a rigid slope is studied in this paper. The tangential friction force caused by the oblique impact is analyzed. The tangential motion of the system is ...A flexible beam with large overall rotating motion impacting with a rigid slope is studied in this paper. The tangential friction force caused by the oblique impact is analyzed. The tangential motion of the system is divided into a stick state and a slip state. The contact constraint model and Coulomb friction model are used respectively to deal with the two states. Based on this hybrid modeling method, dynamic equations of the system, which include all states(before, during, and after the collision)are obtained. Simulation results of a concrete example are compared with the results obtained from two other models: a nontangential friction model and a modified Coulomb model. Differences in the results from the three models are discussed. The tangential friction force cannot be ignored when an oblique impact occurs. In addition, the results obtained from the model proposed in this paper are more consistent with real movement.展开更多
The Lagrange-I equations and measure differential equations for multibody systems with unilateral and bilateral constraints are constructed. For bilateral constraints, frictional forces and their impulses contain the ...The Lagrange-I equations and measure differential equations for multibody systems with unilateral and bilateral constraints are constructed. For bilateral constraints, frictional forces and their impulses contain the products of the filled-in relay function induced by Coulomb friction and the absolute values of normal constraint reactions. With the time-stepping impulse-velocity scheme, the measure differential equations are discretized. The equations of horizontal linear complementarity problems (HLCPs), which are used to compute the impulses, are constructed by decomposing the absolute function and the filled-in relay function. These HLCP equations degenerate into equations of LCPs for frictional unilateral constraints, or HLCPs for frictional bilateral constraints. Finally, a numerical simulation for multibody systems with both unilateral and bilateral constraints is presented.展开更多
Assuming a Winterberg model for space where the vacuum consists of a very stiff two-component superfluid made up of positive and negative mass planckions, Q theory is the hypothesis, that Planck charge, <i>q<...Assuming a Winterberg model for space where the vacuum consists of a very stiff two-component superfluid made up of positive and negative mass planckions, Q theory is the hypothesis, that Planck charge, <i>q<sub>pl</sub></i>, was created at the same time as Planck mass. Moreover, the repulsive force that like-mass planckions experience is, in reality, due to the electrostatic force of repulsion between like charges. These forces also give rise to what appears to be a gravitational force of attraction between two like planckions, but this is an illusion. In reality, gravity is electrostatic in origin if our model is correct. We determine the spring constant associated with planckion masses, and find that, <img src="Edit_770c2a48-039c-4cc9-8f66-406c0cfc565c.png" width="90" height="15" alt="" />, where <i>ζ</i>(3) equals Apery’s constant, 1.202 …, and, <i>n</i><sub>+</sub>(0)=<i>n</i>_(0), is the relaxed, <i>i.e.</i>, <img src="Edit_813d5a6f-b79a-49ba-bdf7-5042541b58a0.png" width="25" height="12" alt="" />, number density of the positive and negative mass planckions. In the present epoch, we estimate that, <i>n</i><sub>+</sub>(0) equals, 7.848E54 m<sup>-3</sup>, and the relaxed distance of separation between nearest neighbor positive, or negative, planckion pairs is, <i>l</i><sub>+</sub>(0)=<i>l</i><sub>_</sub>(0)=5.032E-19 meters. These values were determined using box quantization for the positive and negative mass planckions, and considering transitions between energy states, much like as in the hydrogen atom. For the cosmos as a whole, given a net smeared macroscopic gravitational field of, <img src="Edit_efc8003d-5297-4345-adac-4ac95536934d.png" width="80" height="15" alt="" />, due to all the ordinary, and bound, matter contained within the observable universe, an average displacement from equilibrium for the planckion masses is a mere 7.566E-48 meters, within the vacuum made up of these particles. On the surface of the earth, where, <i>g</i>=9.81m/s<sup>2</sup>, the displacement amounts to, 7.824E-38 meters. All of these displacements are due to increased gravitational pressure within the vacuum, which in turn is caused by applied gravitational fields. The gravitational potential is also derived and directly related to gravitational pressure.展开更多
The wind stress acquired from European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP) climate models and QSCAT satellite observations are analyzed by using ...The wind stress acquired from European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP) climate models and QSCAT satellite observations are analyzed by using frequency-wavenumber spectrum method. The spectrum of two climate models, i.e., ECMWF and NCEP, is similar for both 10 m wind data and model output wind stress data, which indicates that both the climate models capture the key feature of wind stress. While the QSCAT wind stress data shows the similar characteristics with the two climate models in both spectrum domain and the spatial distribution, but with a factor of approximately 1.25 times larger than that of climate models in energy. These differences show the uncertainty in the different wind stress products, which inevitably cause the atmospheric faction torque uncertainties on solid Earth with a 60% departure in annual amplitude, and furtherly affect the precise estimation of the Earth's rotation.展开更多
The movement of lubricated fibres in a fibre assembly is investigated theoretically and aviscous sliding model of friction is proposed.Previous work and experimental results are discussedin relation to the model.Resul...The movement of lubricated fibres in a fibre assembly is investigated theoretically and aviscous sliding model of friction is proposed.Previous work and experimental results are discussedin relation to the model.Results of drawing experiments carried out on wool slivers are also pres-ented and discussed.展开更多
This research effort addresses the social-distancing problem. As the COVID-19 pandemic continues, we’ve learned the importance of keeping proper distance, so as to avoid (or minimize) the spread of infection. For thi...This research effort addresses the social-distancing problem. As the COVID-19 pandemic continues, we’ve learned the importance of keeping proper distance, so as to avoid (or minimize) the spread of infection. For this paper, individuals are represented as positively-charged particles, behaving in accordance with Coulomb’s Law. Additionally, negatively-charged stationary (non-moving) particles are positioned such that their attraction to the positively-charged particles guides the movement of the positively-charged particles in a desirable fashion. During a simulation process, Coulomb’s Law guides particle behavior such that the positively-charged particles arrange themselves in a way such that their spacing is essentially optimal. Of course, these positively charged particles can be thought of as a surrogate for individuals, resulting in the optimal spacing of individuals.展开更多
In this paper, a quantitative analysis of the opening quality in friction spinning and its main ef-fecting factors is first made. Upon this basis the Box-Hunter’s experimental design method is usedto establish the qu...In this paper, a quantitative analysis of the opening quality in friction spinning and its main ef-fecting factors is first made. Upon this basis the Box-Hunter’s experimental design method is usedto establish the quadratic regressional equations in terms of primary opening technologicalparameters and yarn quality for medium and fine count friction spinning. The results of analysisand discussion show that the proper choice of opening roller speed and its reasonable match withthe yarn count is singificant for ensuring the spinning quality index as well as reducing unevenness,thin and thick places of the yarn.展开更多
The dielectric constant in Coulomb’s Law, D, can quantify an empirical reduction of force. It can also quantify a reduction of electrostatic field as seen in classical electrostatic theory where the induced charge la...The dielectric constant in Coulomb’s Law, D, can quantify an empirical reduction of force. It can also quantify a reduction of electrostatic field as seen in classical electrostatic theory where the induced charge layer is assumed to be infinitely thin. The two approaches exemplify two traditions that have been used in parallel for decades. They produce Potential Energy Functions (PEFs) that differ by a factor of the permittivity, εr. The classical electrostatic theory result can be incorporated into force field models with an effective dielectric function, Deff, which spans the induced charge layer and accommodates both traditions. The Deff function increases the magnitude of local terms as compared with cumulative long distance terms. It is shown that the Deff function reduces distance dependence of the radial PEF within the induced charge layer and improves computational stability for some systems including substrate in dilute salt solution. End use applications include pharmaceutical development (e.g. protein calculations with docking), materials development, solvation energy calculations and QM/MM calculations.展开更多
A dynamic contact problem for elastic-viscoplastic materials with thermal effects is investigated. The contact is bilateral, and the friction is modeled with Tresca's friction law with heat exchange. A variational fo...A dynamic contact problem for elastic-viscoplastic materials with thermal effects is investigated. The contact is bilateral, and the friction is modeled with Tresca's friction law with heat exchange. A variational formulation of the model is derived, and the existence of a unique weak solution is proved. The proofs are based on the classical result of nonlinear first order evolution inequalities, the equations with monotone operators, and the fixed point arguments. Finally, the continuous dependence of the solution on the friction yield limit is studied.展开更多
In electromagnetics, Coulomb’s law is a very classic formula. Almost all textbooks give this formula, but none of them give a detailed corresponding theoretical derivation. In order for beginners of physics to better...In electromagnetics, Coulomb’s law is a very classic formula. Almost all textbooks give this formula, but none of them give a detailed corresponding theoretical derivation. In order for beginners of physics to better understand the physical meaning of this formula, we explored the source, the physical model and mechanism of this formula. Based on the principle that the interaction between two different fields can generate energy density, which is equal to the pressure, we analyzed the distribution of the electric field energy density as well as the corresponding pressure on the charged surface. Through the rigorous mathematical derivation, we give the theoretical derivation of this formula.展开更多
<p> For a point charge between two grounded conductor planes forming a 60<span style="white-space:nowrap;">°</span> angle, the potential and electric field generated by point charge fo...<p> For a point charge between two grounded conductor planes forming a 60<span style="white-space:nowrap;">°</span> angle, the potential and electric field generated by point charge for Yukawa’s potential (<span style="white-space:nowrap;">e<sup><span style="white-space:nowrap;">-</span><em>μr</em></sup>/<em>r</em></span>) and Coulomb’s potential (1/<em>r</em>) are modeled and simulated. The expression for the potential that generalizes the cases discussed in López-Mari<span style="white-space:nowrap;"><span style="white-space:nowrap;">ñ</span></span>o, M. and Trujillo Caballero, J. (2017) Point Charges and Conducting Planes for Yukawa’s Potential and Coulomb’s Potential. <em>Journal of Electromagnetic Analysis and Applications</em>, 9, 135-146. </p> <p> <a href="https://doi.org/10.4236/jemaa.2017.910012" target="_blank">https://doi.org/10.4236/jemaa.2017.910012</a> is presented. Graphs for the potential and electric field for both cases are showed using Maple, that of Coulomb and that of Yukawa for different values of <span style="white-space:nowrap;"><em>μ</em></span> . The purpose of this work is to offer students a practical guide for problem analysis of electrostatics using Maple’s capabilities as a computational tool. </p>展开更多
We have recently published a series of papers on a theory we call collision space-time, that seems to unify gravity and quantum mechanics. In this theory, mass and energy are redefined. We have not so far demonstrated...We have recently published a series of papers on a theory we call collision space-time, that seems to unify gravity and quantum mechanics. In this theory, mass and energy are redefined. We have not so far demonstrated how to make it compatible with electric properties such as charge and the Coulomb force. The aim of this paper is to show how electric properties can be reformulated to make it consistent with collision space-time. It is shown that we need to incorporate the Planck scale into the electric constants to do so. This is also fully possible from a practical point of view, as it has recently been shown how to measure the Planck length independent of other constants and without the need for dimensional analysis.展开更多
Modified Theories of Gravity include spin dependence in General Relativity, to account for additional sources of gravity instead of dark matter/energy approach. The spin-spin interaction is already included in the eff...Modified Theories of Gravity include spin dependence in General Relativity, to account for additional sources of gravity instead of dark matter/energy approach. The spin-spin interaction is already included in the effective nuclear force potential, and theoretical considerations and experimental evidence hint to the hypothesis that Gravity originates from such an interaction, under an averaging process over spin directions. This invites to continue the line of theory initiated by Einstein and Cartan, based on tetrads and spin effects modeled by connections with torsion. As a first step in this direction, the article considers a new modified Coulomb/Newton Law accounting for the spin-spin interaction. The physical potential is geometrized through specific affine connections and specific semi-Riemannian metrics, canonically associated to it, acting on a manifold or at the level of its tangent bundle. Freely falling particles in these “toy Universes” are determined, showing an interesting behavior and unexpected patterns.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11372018 and 11572018)
文摘Based on the dynamical theory of multi-body systems with nonholonomic constraints and an algorithm for complementarity problems, a numerical method for the multi-body systems with two-dimensional Coulomb dry friction and nonholonomic constraints is presented. In particular, a wheeled multi-body system is considered. Here, the state transition of stick-slip between wheel and ground is transformed into a nonlinear complementarity problem (NCP). An iterative algorithm for solving the NCP is then presented using an event-driven method. Dynamical equations of the multi-body system with holonomic and nonholonomic constraints are given using Routh equations and a con- straint stabilization method. Finally, an example is used to test the proposed numerical method. The results show some dynamical behaviors of the wheeled multi-body system and its constraint stabilization effects.
基金supported by the National Natural Science Foundation of China(11372018 and 11172019)
文摘An approach is proposed for modeling and anal- yses of rigid multibody systems with frictional translation joints and driving constraints. The geometric constraints of translational joints with small clearance are treated as bilat- eral constraints by neglecting the impact between sliders and guides. Firstly, the normal forces acting on sliders, the driv- ing constraint forces (or moments) and the constraint forces of smooth revolute joints are all described by complementary conditions. The frictional contacts are characterized by a set- valued force law of Coulomb's dry friction. Combined with the theory of the horizontal linear complementarity problem (HLCP), an event-driven scheme is used to detect the transi- tions of the contact situation between sliders and guides, and the stick-slip transitions of sliders, respectively. And then, all constraint forces in the system can be computed easily. Secondly, the dynamic equations of multibody systems are written at the acceleration-force level by the Lagrange multiplier technique, and the Baumgarte stabilization method is used to reduce the constraint drift. Finally, a numerical example is given to show some non-smooth dynamical behaviors of the studied system. The obtained results validate the feasibility of algorithm and the effect of constraint stabilization.
基金supported by the National Natural Science Foundation of China(No.51405393)
文摘The elastic support/dry friction damper is a type of damper which is used for active vibration control in a rotor system.To establish the analytical model of this type of damper,a two-dimensional friction model-ball/plate model was proposed.By using this ball/plate model,a dynamics model of rotor with elastic support/dry friction dampers was established and experimentally verified.Moreover,the damping performance of the elastic support/dry friction damper was studied numerically with respect to some variable parameters.The numerical study shows that the damping performance of the elastic support/dry friction damper is closely related to the stiffness distribution of the rotor-support system,the damper location,the pressing force between the moving and stationary disk,the friction coefficient,the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk.In general,the damper should be located on an elastic support which has a large vibration amplitude in order to achieve a better damping performance,and the more vibration energy in this elastic support concentrates,the better performance of the damper will be.The larger the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk are,the better performance of the damper will be.There will be an optimal value of the friction force at which the damper performs best.
基金supported by the National Natural Science Foundation of China(Grant 11372082)the National Basic Research Program of China(Grant 2015CB057405)
文摘In this paper,we investigate the equilibrium stability of a Filippov-type system having multiple stick regions based upon a smooth and discontinuous(SD) oscillator with dry friction.The sets of equilibrium states of the system are analyzed together with Coulomb friction conditions in both( f_n,f_s) and(x,˙x) planes.In the stability analysis,Lyapunov functions are constructed to derive the instability for the equilibrium set of the hyperbolic type and La Salle's invariance principle is employed to obtain the stability of the nonhyperbolic type.Analysis demonstrates the existence of a thick stable manifold and the interior stability of the hyperbolic equilibrium set due to the attractive sliding mode of the Filippov property,and also shows that the unstable manifolds of the hyperbolic-type are that of the endpoints with their saddle property.Numerical calculations show a good agreement with the theoretical analysis and an excellent efficien y of the approach for equilibrium states in this particular Filippov system.Furthermore,the equilibrium bifurcations are presented to demonstrate the transition between the smooth and the discontinuous regimes.
文摘This work studies a mathematical model describing the static process of contact between a piezoelectric body and a thermally-electrically conductive foundation. The behavior of the material is modeled with a thermo-electro-elastic constitutive law. The contact is described by Signorini's conditions and Tresca's friction law including the electrical and thermal conductivity conditions. A variational formulation of the model in the form of a coupled system for displacements, electric potential, and temperature is de- rived. Existence and uniqueness of the solution are proved using the results of variational inequalities and a fixed point theorem.
基金supported by the National Natural Science Foundation of China(Grants 11272155,11132007,and11502113)the 333 Project of Jiangsu Province in China(Grant BRA2011172)the Fundamental Research Funds for Central Universities(Grant 30920130112009)
文摘A flexible beam with large overall rotating motion impacting with a rigid slope is studied in this paper. The tangential friction force caused by the oblique impact is analyzed. The tangential motion of the system is divided into a stick state and a slip state. The contact constraint model and Coulomb friction model are used respectively to deal with the two states. Based on this hybrid modeling method, dynamic equations of the system, which include all states(before, during, and after the collision)are obtained. Simulation results of a concrete example are compared with the results obtained from two other models: a nontangential friction model and a modified Coulomb model. Differences in the results from the three models are discussed. The tangential friction force cannot be ignored when an oblique impact occurs. In addition, the results obtained from the model proposed in this paper are more consistent with real movement.
基金supported by the National Natural Science Foundation of China (10672007)
文摘The Lagrange-I equations and measure differential equations for multibody systems with unilateral and bilateral constraints are constructed. For bilateral constraints, frictional forces and their impulses contain the products of the filled-in relay function induced by Coulomb friction and the absolute values of normal constraint reactions. With the time-stepping impulse-velocity scheme, the measure differential equations are discretized. The equations of horizontal linear complementarity problems (HLCPs), which are used to compute the impulses, are constructed by decomposing the absolute function and the filled-in relay function. These HLCP equations degenerate into equations of LCPs for frictional unilateral constraints, or HLCPs for frictional bilateral constraints. Finally, a numerical simulation for multibody systems with both unilateral and bilateral constraints is presented.
文摘Assuming a Winterberg model for space where the vacuum consists of a very stiff two-component superfluid made up of positive and negative mass planckions, Q theory is the hypothesis, that Planck charge, <i>q<sub>pl</sub></i>, was created at the same time as Planck mass. Moreover, the repulsive force that like-mass planckions experience is, in reality, due to the electrostatic force of repulsion between like charges. These forces also give rise to what appears to be a gravitational force of attraction between two like planckions, but this is an illusion. In reality, gravity is electrostatic in origin if our model is correct. We determine the spring constant associated with planckion masses, and find that, <img src="Edit_770c2a48-039c-4cc9-8f66-406c0cfc565c.png" width="90" height="15" alt="" />, where <i>ζ</i>(3) equals Apery’s constant, 1.202 …, and, <i>n</i><sub>+</sub>(0)=<i>n</i>_(0), is the relaxed, <i>i.e.</i>, <img src="Edit_813d5a6f-b79a-49ba-bdf7-5042541b58a0.png" width="25" height="12" alt="" />, number density of the positive and negative mass planckions. In the present epoch, we estimate that, <i>n</i><sub>+</sub>(0) equals, 7.848E54 m<sup>-3</sup>, and the relaxed distance of separation between nearest neighbor positive, or negative, planckion pairs is, <i>l</i><sub>+</sub>(0)=<i>l</i><sub>_</sub>(0)=5.032E-19 meters. These values were determined using box quantization for the positive and negative mass planckions, and considering transitions between energy states, much like as in the hydrogen atom. For the cosmos as a whole, given a net smeared macroscopic gravitational field of, <img src="Edit_efc8003d-5297-4345-adac-4ac95536934d.png" width="80" height="15" alt="" />, due to all the ordinary, and bound, matter contained within the observable universe, an average displacement from equilibrium for the planckion masses is a mere 7.566E-48 meters, within the vacuum made up of these particles. On the surface of the earth, where, <i>g</i>=9.81m/s<sup>2</sup>, the displacement amounts to, 7.824E-38 meters. All of these displacements are due to increased gravitational pressure within the vacuum, which in turn is caused by applied gravitational fields. The gravitational potential is also derived and directly related to gravitational pressure.
基金supported by research projects of National Basic Research Program of China (2012CB957802)the National Natural Science Foundation of China (41321063, 41374087)Open Fund of the State Key Laboratory of Geodesy and Earth's Dynamics (2014-2-1-E)
文摘The wind stress acquired from European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP) climate models and QSCAT satellite observations are analyzed by using frequency-wavenumber spectrum method. The spectrum of two climate models, i.e., ECMWF and NCEP, is similar for both 10 m wind data and model output wind stress data, which indicates that both the climate models capture the key feature of wind stress. While the QSCAT wind stress data shows the similar characteristics with the two climate models in both spectrum domain and the spatial distribution, but with a factor of approximately 1.25 times larger than that of climate models in energy. These differences show the uncertainty in the different wind stress products, which inevitably cause the atmospheric faction torque uncertainties on solid Earth with a 60% departure in annual amplitude, and furtherly affect the precise estimation of the Earth's rotation.
文摘The movement of lubricated fibres in a fibre assembly is investigated theoretically and aviscous sliding model of friction is proposed.Previous work and experimental results are discussedin relation to the model.Results of drawing experiments carried out on wool slivers are also pres-ented and discussed.
文摘This research effort addresses the social-distancing problem. As the COVID-19 pandemic continues, we’ve learned the importance of keeping proper distance, so as to avoid (or minimize) the spread of infection. For this paper, individuals are represented as positively-charged particles, behaving in accordance with Coulomb’s Law. Additionally, negatively-charged stationary (non-moving) particles are positioned such that their attraction to the positively-charged particles guides the movement of the positively-charged particles in a desirable fashion. During a simulation process, Coulomb’s Law guides particle behavior such that the positively-charged particles arrange themselves in a way such that their spacing is essentially optimal. Of course, these positively charged particles can be thought of as a surrogate for individuals, resulting in the optimal spacing of individuals.
文摘In this paper, a quantitative analysis of the opening quality in friction spinning and its main ef-fecting factors is first made. Upon this basis the Box-Hunter’s experimental design method is usedto establish the quadratic regressional equations in terms of primary opening technologicalparameters and yarn quality for medium and fine count friction spinning. The results of analysisand discussion show that the proper choice of opening roller speed and its reasonable match withthe yarn count is singificant for ensuring the spinning quality index as well as reducing unevenness,thin and thick places of the yarn.
文摘The dielectric constant in Coulomb’s Law, D, can quantify an empirical reduction of force. It can also quantify a reduction of electrostatic field as seen in classical electrostatic theory where the induced charge layer is assumed to be infinitely thin. The two approaches exemplify two traditions that have been used in parallel for decades. They produce Potential Energy Functions (PEFs) that differ by a factor of the permittivity, εr. The classical electrostatic theory result can be incorporated into force field models with an effective dielectric function, Deff, which spans the induced charge layer and accommodates both traditions. The Deff function increases the magnitude of local terms as compared with cumulative long distance terms. It is shown that the Deff function reduces distance dependence of the radial PEF within the induced charge layer and improves computational stability for some systems including substrate in dilute salt solution. End use applications include pharmaceutical development (e.g. protein calculations with docking), materials development, solvation energy calculations and QM/MM calculations.
文摘A dynamic contact problem for elastic-viscoplastic materials with thermal effects is investigated. The contact is bilateral, and the friction is modeled with Tresca's friction law with heat exchange. A variational formulation of the model is derived, and the existence of a unique weak solution is proved. The proofs are based on the classical result of nonlinear first order evolution inequalities, the equations with monotone operators, and the fixed point arguments. Finally, the continuous dependence of the solution on the friction yield limit is studied.
文摘In electromagnetics, Coulomb’s law is a very classic formula. Almost all textbooks give this formula, but none of them give a detailed corresponding theoretical derivation. In order for beginners of physics to better understand the physical meaning of this formula, we explored the source, the physical model and mechanism of this formula. Based on the principle that the interaction between two different fields can generate energy density, which is equal to the pressure, we analyzed the distribution of the electric field energy density as well as the corresponding pressure on the charged surface. Through the rigorous mathematical derivation, we give the theoretical derivation of this formula.
文摘<p> For a point charge between two grounded conductor planes forming a 60<span style="white-space:nowrap;">°</span> angle, the potential and electric field generated by point charge for Yukawa’s potential (<span style="white-space:nowrap;">e<sup><span style="white-space:nowrap;">-</span><em>μr</em></sup>/<em>r</em></span>) and Coulomb’s potential (1/<em>r</em>) are modeled and simulated. The expression for the potential that generalizes the cases discussed in López-Mari<span style="white-space:nowrap;"><span style="white-space:nowrap;">ñ</span></span>o, M. and Trujillo Caballero, J. (2017) Point Charges and Conducting Planes for Yukawa’s Potential and Coulomb’s Potential. <em>Journal of Electromagnetic Analysis and Applications</em>, 9, 135-146. </p> <p> <a href="https://doi.org/10.4236/jemaa.2017.910012" target="_blank">https://doi.org/10.4236/jemaa.2017.910012</a> is presented. Graphs for the potential and electric field for both cases are showed using Maple, that of Coulomb and that of Yukawa for different values of <span style="white-space:nowrap;"><em>μ</em></span> . The purpose of this work is to offer students a practical guide for problem analysis of electrostatics using Maple’s capabilities as a computational tool. </p>
文摘We have recently published a series of papers on a theory we call collision space-time, that seems to unify gravity and quantum mechanics. In this theory, mass and energy are redefined. We have not so far demonstrated how to make it compatible with electric properties such as charge and the Coulomb force. The aim of this paper is to show how electric properties can be reformulated to make it consistent with collision space-time. It is shown that we need to incorporate the Planck scale into the electric constants to do so. This is also fully possible from a practical point of view, as it has recently been shown how to measure the Planck length independent of other constants and without the need for dimensional analysis.
文摘Modified Theories of Gravity include spin dependence in General Relativity, to account for additional sources of gravity instead of dark matter/energy approach. The spin-spin interaction is already included in the effective nuclear force potential, and theoretical considerations and experimental evidence hint to the hypothesis that Gravity originates from such an interaction, under an averaging process over spin directions. This invites to continue the line of theory initiated by Einstein and Cartan, based on tetrads and spin effects modeled by connections with torsion. As a first step in this direction, the article considers a new modified Coulomb/Newton Law accounting for the spin-spin interaction. The physical potential is geometrized through specific affine connections and specific semi-Riemannian metrics, canonically associated to it, acting on a manifold or at the level of its tangent bundle. Freely falling particles in these “toy Universes” are determined, showing an interesting behavior and unexpected patterns.