A data stream is a massive unbounded sequence of data elements continuouslygenerated at a rapid rate. Due to this reason, most algorithms for data streams sacrifice thecorrectness of their results for fast processing ...A data stream is a massive unbounded sequence of data elements continuouslygenerated at a rapid rate. Due to this reason, most algorithms for data streams sacrifice thecorrectness of their results for fast processing time. The processing time is greatly influenced bythe amount of information that should be maintained. This issue becomes more serious in findingfrequent itemsets or frequency counting over an online transactional data stream since there can bea large number of itemsets to be monitored. We have proposed a method called the estDec method forfinding frequent itemsets over an online data stream. In order to reduce the number of monitoreditemsets in this method, monitoring the count of an itemset is delayed until its support is largeenough to become a frequent itemset in the near future. For this purpose, the count of an itemsetshould be estimated. Consequently, how to estimate the count of an itemset is a critical issue inminimizing memory usage as well as processing time. In this paper, the effects of various countestimation methods for finding frequent itemsets are analyzed in terms of mining accuracy, memoryusage and processing time.展开更多
In this Letter, we propose a novel three-dimeusional (3D) color microscopy for microorganisms under photon- starved conditions using photon counting integral imaging and Bayesian estimation with adaptive priori info...In this Letter, we propose a novel three-dimeusional (3D) color microscopy for microorganisms under photon- starved conditions using photon counting integral imaging and Bayesian estimation with adaptive priori infor- mation. In photon counting integral imaging, 3D images can be visualized using maximum likelihood estimation (MLE). However, since MLE does not consider a priori information of objects, the visual quality of 3D images may not be accurate. In addition, the only grayscale image can be reconstructed. Therefore, to enhance the visual quality of 3D images, we propose photon counting microscopy using maximum a posteriori with adaptive priori information. In addition, we consider a wavelength of each basic color channel to reconstruct 3D color images. To verify our proposed method, we carry out optical experiments.展开更多
文摘A data stream is a massive unbounded sequence of data elements continuouslygenerated at a rapid rate. Due to this reason, most algorithms for data streams sacrifice thecorrectness of their results for fast processing time. The processing time is greatly influenced bythe amount of information that should be maintained. This issue becomes more serious in findingfrequent itemsets or frequency counting over an online transactional data stream since there can bea large number of itemsets to be monitored. We have proposed a method called the estDec method forfinding frequent itemsets over an online data stream. In order to reduce the number of monitoreditemsets in this method, monitoring the count of an itemset is delayed until its support is largeenough to become a frequent itemset in the near future. For this purpose, the count of an itemsetshould be estimated. Consequently, how to estimate the count of an itemset is a critical issue inminimizing memory usage as well as processing time. In this paper, the effects of various countestimation methods for finding frequent itemsets are analyzed in terms of mining accuracy, memoryusage and processing time.
基金supported in part by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,Information and Communications TechnologiesFuture Planning(No.2011-0030079)Basic Science Research Program through the NRF funded by the Ministry of Education(NRF-2013R1A1A2057549)
文摘In this Letter, we propose a novel three-dimeusional (3D) color microscopy for microorganisms under photon- starved conditions using photon counting integral imaging and Bayesian estimation with adaptive priori infor- mation. In photon counting integral imaging, 3D images can be visualized using maximum likelihood estimation (MLE). However, since MLE does not consider a priori information of objects, the visual quality of 3D images may not be accurate. In addition, the only grayscale image can be reconstructed. Therefore, to enhance the visual quality of 3D images, we propose photon counting microscopy using maximum a posteriori with adaptive priori information. In addition, we consider a wavelength of each basic color channel to reconstruct 3D color images. To verify our proposed method, we carry out optical experiments.