In the boreal summer and autumn of 2023,the globe experienced an extremely hot period across both oceans and continents.The consecutive record-breaking mean surface temperature has caused many to speculate upon how th...In the boreal summer and autumn of 2023,the globe experienced an extremely hot period across both oceans and continents.The consecutive record-breaking mean surface temperature has caused many to speculate upon how the global temperature will evolve in the coming 2023/24 boreal winter.In this report,as shown in the multi-model ensemble mean(MME)prediction released by the Institute of Atmospheric Physics at the Chinese Academy of Sciences,a medium-to-strong eastern Pacific El Niño event will reach its mature phase in the following 2−3 months,which tends to excite an anomalous anticyclone over the western North Pacific and the Pacific-North American teleconnection,thus serving to modulate the winter climate in East Asia and North America.Despite some uncertainty due to unpredictable internal atmospheric variability,the global mean surface temperature(GMST)in the 2023/24 winter will likely be the warmest in recorded history as a consequence of both the El Niño event and the long-term global warming trend.Specifically,the middle and low latitudes of Eurasia are expected to experience an anomalously warm winter,and the surface air temperature anomaly in China will likely exceed 2.4 standard deviations above climatology and subsequently be recorded as the warmest winter since 1991.Moreover,the necessary early warnings are still reliable in the timely updated mediumterm numerical weather forecasts and sub-seasonal-to-seasonal prediction.展开更多
Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate ...Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate count feature is essential for improving safety in infusion management. This study aimed to verify if the new drop counters could secure accurate flow rate and drip count by conducting actual flow rate measurements using gravimetry and functional evaluation. A drop counter was attached to each drip chamber of the infusion set, and an IV drip was conducted at the 100 ml/h flow rate. The weight of discharged physiological saline was measured to plot trumpet curves. Next, three different types of drop counters were evaluated to determine if they maintained drip count accuracy according to the changes in their position angles. The flow rate errors in all conditions indicated trumpet-like curves, exhibiting an overall error range within ±10% in all observation windows. Although every drop counter successfully detected and measured dripping, it was challenging in some counters to detect dripping when the drip chamber was tilted. In comparing adult and pediatric IV sets, the adult IV set was found to be less likely to detect dripping in the angled position. No significant differences in results were confirmed between high and low flow rates, suggesting that the drop count function would not be affected by the flow rate in the ranges of typical infusion practices. Doppler sensors have a wide range of measurements and high sensitivity;the dripping was detected successfully even when the drip chamber was tilted, probably due to the advantages of these sensors. In contrast, miscounts occurred in those equipped with infrared sensors, which could not detect light intensity changes in tilted positions. Understanding the tendencies in flow rate errors in infusion can be valuable information for infusion management.展开更多
Structural reconstruction of electrocatalysts plays a pivotal role in catalytic performances for CO_(2)reduction reaction(CO_(2)RR),whereas the behavior is by far superficially understood.Here,we report that CO_(2)acc...Structural reconstruction of electrocatalysts plays a pivotal role in catalytic performances for CO_(2)reduction reaction(CO_(2)RR),whereas the behavior is by far superficially understood.Here,we report that CO_(2)accessibility results in a universal self-adaptive structural reconstruction from Cu_(2)O to Cu@CuxO composites,ending with feeding gas-dependent microstructures and catalytic performances.The CO_(2)-rich atmosphere favors reconstruction for CO_(2)RR,whereas the CO_(2)-deficient one prefers that for hydrogen evolution reaction.With the assistance of spectroscopic analysis and theoretical calculations,we uncover a CO_(2)-induced passivation behavior by identifying a reductionresistant but catalytic active Cu(I)-rich amorphous layer stabilized by*CO intermediates.Additionally,we find extra CO production is indispensable for the robust production of C2H4.An inverse correlation between durability and FECO/FEC2H4 is disclosed,suggesting that the selfstabilization process involving the absorption of*CO intermediates on Cu(I)sites is essential for durable electrolysis.Guided by this insight,we design hollow Cu_(2)O nanospheres for durable and selective CO_(2)RR electrolysis in producing C2H4.Our work recognizes the previously overlooked passivation reconstruction and self-stabilizing behavior and highlights the critical role of the local atmosphere in modulating reconstruction and catalytic processes.展开更多
The influence of filling parameters including pouring temperature, filling speed, boost pressure and synchronous pressure on the fatigue of A357 alloy produced by counter pressure plaster casting was studied. The Tagu...The influence of filling parameters including pouring temperature, filling speed, boost pressure and synchronous pressure on the fatigue of A357 alloy produced by counter pressure plaster casting was studied. The Taguchi method was used to investigate the relationship between the fatigue performance and filling parameters. The results show that filling speed is the most significant factor among the four parameters. Synchronous pressures is less influential on the fatigue life when the value of synchronous pressure is from 400 kPa to 600 kPa.展开更多
Significant progress has been made in the development of non-precious metal electrocatalysts (NPMEs) during the past decade. Correspondingly, there is an urgent demand for an appropriate measurement method to be est...Significant progress has been made in the development of non-precious metal electrocatalysts (NPMEs) during the past decade. Correspondingly, there is an urgent demand for an appropriate measurement method to be established for the reliable evaluation of NPMEs. In this study, platinum and graphite counter electrodes were used to investigate the impact of counter electrode material on the accelerated durability testing (ADT) of NPMEs in acidic medium. Platinum used as the coun- ter electrode in a traditional three-electrode electrochemical cell was found to dissolve in acidic medium and re-deposit on NPME coated on the working electrode during ADT. Such re-deposition causes the oxygen reduction reaction (ORR) performance of NPMEs to remarkably improve, and thus will seriously mislead our judgment of NPMEs if we are unaware of it. The phenomenon can be avoided using a graphite counter electrode.展开更多
文章通过对Counting Online Usage of Networked Electronic Resources Codes of Practice(COUNTER)项目的成立背景、组织成员、日常管理、业务的介绍以及其成功因素的分析,认为我国也亟需加强对数字期刊及其他资源利用情况的统计,并提...文章通过对Counting Online Usage of Networked Electronic Resources Codes of Practice(COUNTER)项目的成立背景、组织成员、日常管理、业务的介绍以及其成功因素的分析,认为我国也亟需加强对数字期刊及其他资源利用情况的统计,并提出了相关建议。展开更多
基金the Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LYDQC010)the National Natural Science Foundation of China(Grant No.42175045).
文摘In the boreal summer and autumn of 2023,the globe experienced an extremely hot period across both oceans and continents.The consecutive record-breaking mean surface temperature has caused many to speculate upon how the global temperature will evolve in the coming 2023/24 boreal winter.In this report,as shown in the multi-model ensemble mean(MME)prediction released by the Institute of Atmospheric Physics at the Chinese Academy of Sciences,a medium-to-strong eastern Pacific El Niño event will reach its mature phase in the following 2−3 months,which tends to excite an anomalous anticyclone over the western North Pacific and the Pacific-North American teleconnection,thus serving to modulate the winter climate in East Asia and North America.Despite some uncertainty due to unpredictable internal atmospheric variability,the global mean surface temperature(GMST)in the 2023/24 winter will likely be the warmest in recorded history as a consequence of both the El Niño event and the long-term global warming trend.Specifically,the middle and low latitudes of Eurasia are expected to experience an anomalously warm winter,and the surface air temperature anomaly in China will likely exceed 2.4 standard deviations above climatology and subsequently be recorded as the warmest winter since 1991.Moreover,the necessary early warnings are still reliable in the timely updated mediumterm numerical weather forecasts and sub-seasonal-to-seasonal prediction.
文摘Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate count feature is essential for improving safety in infusion management. This study aimed to verify if the new drop counters could secure accurate flow rate and drip count by conducting actual flow rate measurements using gravimetry and functional evaluation. A drop counter was attached to each drip chamber of the infusion set, and an IV drip was conducted at the 100 ml/h flow rate. The weight of discharged physiological saline was measured to plot trumpet curves. Next, three different types of drop counters were evaluated to determine if they maintained drip count accuracy according to the changes in their position angles. The flow rate errors in all conditions indicated trumpet-like curves, exhibiting an overall error range within ±10% in all observation windows. Although every drop counter successfully detected and measured dripping, it was challenging in some counters to detect dripping when the drip chamber was tilted. In comparing adult and pediatric IV sets, the adult IV set was found to be less likely to detect dripping in the angled position. No significant differences in results were confirmed between high and low flow rates, suggesting that the drop count function would not be affected by the flow rate in the ranges of typical infusion practices. Doppler sensors have a wide range of measurements and high sensitivity;the dripping was detected successfully even when the drip chamber was tilted, probably due to the advantages of these sensors. In contrast, miscounts occurred in those equipped with infrared sensors, which could not detect light intensity changes in tilted positions. Understanding the tendencies in flow rate errors in infusion can be valuable information for infusion management.
基金supported by the National Natural Science Foundation of China(Grant No.22479097)the Shanghai Science and Technology Committee(Grant No.23ZR1433000)the National High-Level Talent Program for Young Scholars,the Start-up Fund(F.S.)from Shanghai Jiao Tong University.
文摘Structural reconstruction of electrocatalysts plays a pivotal role in catalytic performances for CO_(2)reduction reaction(CO_(2)RR),whereas the behavior is by far superficially understood.Here,we report that CO_(2)accessibility results in a universal self-adaptive structural reconstruction from Cu_(2)O to Cu@CuxO composites,ending with feeding gas-dependent microstructures and catalytic performances.The CO_(2)-rich atmosphere favors reconstruction for CO_(2)RR,whereas the CO_(2)-deficient one prefers that for hydrogen evolution reaction.With the assistance of spectroscopic analysis and theoretical calculations,we uncover a CO_(2)-induced passivation behavior by identifying a reductionresistant but catalytic active Cu(I)-rich amorphous layer stabilized by*CO intermediates.Additionally,we find extra CO production is indispensable for the robust production of C2H4.An inverse correlation between durability and FECO/FEC2H4 is disclosed,suggesting that the selfstabilization process involving the absorption of*CO intermediates on Cu(I)sites is essential for durable electrolysis.Guided by this insight,we design hollow Cu_(2)O nanospheres for durable and selective CO_(2)RR electrolysis in producing C2H4.Our work recognizes the previously overlooked passivation reconstruction and self-stabilizing behavior and highlights the critical role of the local atmosphere in modulating reconstruction and catalytic processes.
文摘The influence of filling parameters including pouring temperature, filling speed, boost pressure and synchronous pressure on the fatigue of A357 alloy produced by counter pressure plaster casting was studied. The Taguchi method was used to investigate the relationship between the fatigue performance and filling parameters. The results show that filling speed is the most significant factor among the four parameters. Synchronous pressures is less influential on the fatigue life when the value of synchronous pressure is from 400 kPa to 600 kPa.
基金supported by the Fundamental Research Funds for the Central Universities(DUT15RC(3)001,DUT15ZD225)the Program for Liao-ning Excellent Talents in University(LR2015014)+1 种基金the Liaoning BaiQianWan Talents Program(201519)Dalian Excellent Young Scientific and Technological Talents(2015R006)
文摘Significant progress has been made in the development of non-precious metal electrocatalysts (NPMEs) during the past decade. Correspondingly, there is an urgent demand for an appropriate measurement method to be established for the reliable evaluation of NPMEs. In this study, platinum and graphite counter electrodes were used to investigate the impact of counter electrode material on the accelerated durability testing (ADT) of NPMEs in acidic medium. Platinum used as the coun- ter electrode in a traditional three-electrode electrochemical cell was found to dissolve in acidic medium and re-deposit on NPME coated on the working electrode during ADT. Such re-deposition causes the oxygen reduction reaction (ORR) performance of NPMEs to remarkably improve, and thus will seriously mislead our judgment of NPMEs if we are unaware of it. The phenomenon can be avoided using a graphite counter electrode.
文摘文章通过对Counting Online Usage of Networked Electronic Resources Codes of Practice(COUNTER)项目的成立背景、组织成员、日常管理、业务的介绍以及其成功因素的分析,认为我国也亟需加强对数字期刊及其他资源利用情况的统计,并提出了相关建议。