Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving s...Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving sequence. Vibration characteristics of a turbofan engine are analyzed by using the two methods. Com- pared with results calculated using transfer matrix method and test results, the two methods are valuable and have great potential in practical applications for vibration characteristic investigation of aero-engines with high thrust-weight ratio.展开更多
The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented ...The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.展开更多
This serial research has proposed the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctua...This serial research has proposed the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind circumstance. In this paper, the tandem impellers prepared for the counter-rotating type pumping unit were operated at the turbine mode, and the performances and the flow conditions were investigated numerically with accompanying the experimental results. Even though providing the pumping unit for the turbine mode, the maximum hydraulic efficiency is close to one of the counter-rotating type hydroelectric unit designed exclusively for the turbine mode. Besides, the runners/impellers of the unit work evidently so as to coincide the angular momentum change through the front runners/impellers with that through the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet, without the guide vanes. From these results, it can be concluded that this type unit is effective to work at not only the pumping but also the turbine modes.展开更多
It is difficult for renewable energy resources to provide constant power with excellent quality for the grid system. This serial research proposes a power stabilization system with a pumped storage to guarantee power ...It is difficult for renewable energy resources to provide constant power with excellent quality for the grid system. This serial research proposes a power stabilization system with a pumped storage to guarantee power quality and capacity, while the outputs from the energy resources are at unstable and/or fluctuating conditions. The power stabilization system with a counter-rotating type pump-turbine unit was prepared and operated at the pumping and the turbine modes. The unit composed of the tandem impellers/runners connected to the inner and the outer armatures of the unique motor/generator. The experiments have verified that this type pump-turbine unit is reasonably effective to stabilize momentarily/instantaneously the fluctuating power from the renewable energy resources.展开更多
Electrochemical machining (ECM) has been widely used in the aerospace, automotive, defense and medical industries for its many advantages over traditional machining methods. However, the machining accuracy in ECM is...Electrochemical machining (ECM) has been widely used in the aerospace, automotive, defense and medical industries for its many advantages over traditional machining methods. However, the machining accuracy in ECM is to a great extent limited by the stray corrosion of the unwanted material removal. Many attempts have been made to improve the ECM accuracy, such as the use of a pulse power, passivating electrolytes and auxiliary electrodes. However, they are sometimes insufficient for the reduction of the stray removal and have their limitations in many cases. To solve the stray corrosion problem in CRECM, insulating and conductive coatings are respectively used. The different implement processes of the two kinds of coatings are introduced. The effects of the two kinds of shielding coatings on the anode shaping process are investigated. Numerical simulations and experiments are conducted for the comparison of the two coatings. The simulation and experimental results show that both the two kinds of coatings are valid for the reduction of stray corrosion on the top surface of the convex structure. However, for insulating coating, the convex sidewall becomes concave when the height of the convex structure is over 1.26 ram. In addition, it is easy to peel off by the high-speed electrolyte. In contrast, the conductive coating has a strong adhesion, and can be well reserved during the whole machining process. The convex structure fabricated by using a conductive iron coating layer presents a favorable sidewall profile. It is concluded that the conductive coating is more effective for the improvement of the machining quality in CRECM. The proposed shielding coatings can also be employed to reduce the stray corrosion in other schemes of ECM.展开更多
With the increasing demand for the clean sustainable power, the turbine design urgently turns to increase the capability significantly toward higher head for generating larger power. Currently, there are many studies ...With the increasing demand for the clean sustainable power, the turbine design urgently turns to increase the capability significantly toward higher head for generating larger power. Currently, there are many studies in the field of the bulb turbine with single-stage runner, though reports about counter-rotating tandem-runner are rare. However, the further high-head application with the single-stage runner is very difficult to achieve due to the limit of the specific speed. In this paper, a new bulb turbine with the tandem-runner is designed in order to substantially increase the applicable limit toward higher head with larger power. A half of the net head is absorbed by the frontal runner which can generate output power, while the remaining half is absorbed by the rear runner. To generate the Euler energy required for the rear runner, the frontal runner has the counter-rotation against the rear runner so that the counter-rotating tandem-runner can meet the purpose of double head and power under the same size as the conventional bulb turbine. Supply and demand of Euler energy between the two runners are thoroughly optimized through the detailed flow analysis, in order to secure the stable operation. As a result, the interference of Euler energies between the outflow from the frontal runner and the inflow to the rear runner is confirmed to be very small on the counter-rotating interface between the two runners. The prediction method of on-cam performance between the two adjustable runners is also developed numerically, which provides optimal flow between the two runners. This research provides a theoretical basis for the optimal design and operation of the counter-rotating tandem-runner bulb turbines.展开更多
The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the ...The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The technology scheme of the counter-rotating turbine system is proposed, then the experimental simulation of the lubricating oil loop, fuel loop, and seawater loop is completed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.展开更多
This paper studies the communication problem at the counter-rotating seam of the low-orbit satellite based on the walker constellation. The counter-rotating seam has a short life cycle, low capacity, and dynamic geome...This paper studies the communication problem at the counter-rotating seam of the low-orbit satellite based on the walker constellation. The counter-rotating seam has a short life cycle, low capacity, and dynamic geometric parameters. To better utilize the scarce link resources at the seam, increase network throughput, and approach the physical limits of the link throughput at the seam, an initial phase condition that maximizes the relative rotational joint link throughput is calculated. In the experimental simulation results using the Iridium system as an example, it is shown that better throughput can be obtained under the initial conditions, and the throughput is improved by about 30%.展开更多
Most of the schemes for generating isolated attosecond pulses(IAP) are sensitive to the carrier-envelope phase(CEP)of the driving lasers. We propose a scheme for generating IAP using two-color counter-rotating cir...Most of the schemes for generating isolated attosecond pulses(IAP) are sensitive to the carrier-envelope phase(CEP)of the driving lasers. We propose a scheme for generating IAP using two-color counter-rotating circularly polarized(TCCRCP) laser pulses. The results demonstrate that the dependence of the IAP generation on CEP stability is largely reduced in this scheme. IAP can be generated at most of CEPs. Therefore, the experiment requirements become lower.展开更多
We theoretically investigated the properties of the high-order harmonic generation from an argon atom by bichromatic counter-rotating circularly polarized(BCCP)laser field.The harmonic emission processes have been ill...We theoretically investigated the properties of the high-order harmonic generation from an argon atom by bichromatic counter-rotating circularly polarized(BCCP)laser field.The harmonic emission processes have been illustrated by numerically solving the two-dimensional time-dependent Schr¨odinger equation of an atom in intense laser fields.It is found that with the decrease of the right-circularly polarized laser wavelength,the harmonic spectra are gradually splitting and the harmonic orders move towards the higher frequency.Meanwhile,the integer and semi-integer harmonic emission will be generated when the frequency ratios of right-and left-circularly polarized lasers are semi-integer.The emission mechanism of the semi-integer-order harmonics has been investigated by using the rules of photon absorption and emission.展开更多
We theoretically investigate the effects of different electronic states as the initial state on the vortex patterns in photoelectron momentum distributions(PMDs)from numerical solutions of the two-dimensional(2D)time-...We theoretically investigate the effects of different electronic states as the initial state on the vortex patterns in photoelectron momentum distributions(PMDs)from numerical solutions of the two-dimensional(2D)time-dependent Schrodinger equation(TDSE)of He^(+)with a pair of counter-rotating circularly polarized attosecond pulses.It is found that the number of spiral arms in vortex patterns is equal to the number of the absorbed photons when the initial state is the ground state.However,the number of spiral arms in vortex patterns is always two more than the number of the absorbed photons when the initial state is the excited state.This sensitivity is attributed to the initial electron density distribution.In addition,we have demonstrated the PMDs for different initial electronic states with the same wavelengths and analyzed their corresponding physical mechanisms.It is illustrated that the method presented can be employed to effectively control the distribution of the electron vortices.展开更多
We investigate high-order harmonic generation from atoms irradiated by bichromatic counter-rotating circularly polarized laser pulses by numerically solving the time-dependent Schrödinger equation.It is found tha...We investigate high-order harmonic generation from atoms irradiated by bichromatic counter-rotating circularly polarized laser pulses by numerically solving the time-dependent Schrödinger equation.It is found that the minimum energy position of the harmonic spectrum and the non-integer order optical radiation are greatly discrepant for different atomic potentials.By analyzing the quantum trajectory of the harmonic emission,discrepancies among the harmonic spectra from different potentials can be attributed to the action of the potential on the ionized electrons.In addition,based on the influence of the driving light intensity on the overall intensity and ellipticity of higher order harmonics,the physical conditions for generating a high-intensity circularly polarized harmonic can be obtained.展开更多
Ocean energy has a potential of providing a large amount of renewable energy around the world. One of the forms of ocean energy, tidal stream power is widely recognized as the continuous, predictable and eco-friendly ...Ocean energy has a potential of providing a large amount of renewable energy around the world. One of the forms of ocean energy, tidal stream power is widely recognized as the continuous, predictable and eco-friendly ocean energy source. Unique tandem propellers that can counter-rotate have been designed to generate electric power effectively from a tidal stream. This type of power unit has several advantages compare to the conventional unit with a single propeller. At the design of the tidal stream power unit, it is important to investigate the structure of the tip vortex tubes shedding to predict the load of the propeller. In this research, we investigated the tip vortex shedding using the CFD method for the conventional single propeller and counter-rotating type tandem propellers and estimated the performance efficiency using RANS (Reynolds Averaged Navier-Stokes) model and we confirmed the limitation of RANS model on the calculation of the tip vortex stretching.展开更多
Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. The pump-turbine unit is prepared for the power stabilization system, in this serial researc...Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. The pump-turbine unit is prepared for the power stabilization system, in this serial research, to provide the constant power with good quality for the grid system, even at the suddenly fluctuating/turbulent output from renewable energies. In the unit, the angular momentum changes through the front impeller/runner must be the same as that through the rear impeller/runner, that is, the axial flow at the outlet should be the same to the axial flow at the inlet. Such flow conditions are advantageous to work at not only the pumping mode but also the turbine mode. This work discusses experimentally the performance of the unit, and verifies that this type unit is very effective to both operating modes.展开更多
Tidal stream power units with horizontal-axis propellers are one of promising technologies for generating the renewable green energy. The ebb and flow require that the power unit must operate in bidirectional tidal st...Tidal stream power units with horizontal-axis propellers are one of promising technologies for generating the renewable green energy. The ebb and flow require that the power unit must operate in bidirectional tidal streams. Hence a tidal stream power unit with counter-rotating type horizontal-axis bidirectional propellers is proposed in this paper. The blades with fully-symmetrical hydrofoils were optimized numerically. The output and flow conditions predicted by the computational fluid dynamics simulations are compared with the results of the wind tunnel experiments at the higher tip speed ratios, which are of expected usual operating conditions of this unit. The numerical and experimental results show good agreements. It is also confirmed that the flow discharged from the counter-rotating type propellers has no swirling component, though the single propeller generates the unacceptable swirling component.展开更多
Three-Dimensional(3D)swirling flow structures,generated by a counter-rotating dualstage swirler in a confined chamber with a confinement ratio of 1.53,were experimentally investigated at Re=2.3×10^(5)using Tomogr...Three-Dimensional(3D)swirling flow structures,generated by a counter-rotating dualstage swirler in a confined chamber with a confinement ratio of 1.53,were experimentally investigated at Re=2.3×10^(5)using Tomographic Particle Image Velocimetry(Tomo-PIV)and planar Particle Image Velocimetry(PIV).Based on the analysis of the 3D time-averaged swirling flow structures and 3D Proper Orthogonal Decomposition(POD)of the Tomo-PIV data,typical coherent flow structures,including the Corner Recirculation Zone(CRZ),Central Recirculation Zone(CTRZ),and Lip Recirculation Zone(LRZ),were extracted.The counter-rotating dual-stage swirler with a Venturi flare generates the independence process of vortex breakdown from the main stage and pilot stage,leading to the formation of an LRZ and a smaller CTRZ near the nozzle outlet.The confinement squeezes the CRZ to the corner and causes a reverse rotation flow to limit the shape of the CTRZ.A large-scale flow structure caused by the main stage features an explosive breakup,flapping,and Precessing Vortex Core(PVC).The explosive breakup mode dominates the swirling flow structures owing to the expansion and construction of the main jet,whereas the flapping mode is related to the wake perturbation.Confinement limits the expansion of PVC and causes it to contract after the impacting area.展开更多
In order to get a deep insight of a submerged inlet on the plane surface, the integrated flow field of the inlet and fuselage has been numerically studied. The investigation is mainly focused on the formation of the t...In order to get a deep insight of a submerged inlet on the plane surface, the integrated flow field of the inlet and fuselage has been numerically studied. The investigation is mainly focused on the formation of the total pressure distribution at the exit of the inlet, the structure of the inner flow and the effects of the boundary layer along the fuselage on the performance of the inlet. Moreover, in comparison with the experimental data at different angles of attack, yaws and mass flow ratios, the reliabilities of the computational fluid dynamics(CFD) studied are verified. Results indicate: (1) the CFD results agree well with the experiment results and the relative errors of the total pressure coefficient is less than 1% ; (2) at the inlet's exit, the contour of total pressure obtained by CFD is similar to the experiment result except the contour in the low total pressure zone in CFD is slightly larger; (3) the secondary flow at the cross section behave as two counter-rotating vortices. Along the flow direction, the fields influenced by the vortex pair transport downstream and expand to the whole section at the exit; (4) the total pressure loss at the exit of the submerged inlet can be divided into external loss and internal loss. Usually, the external loss is greater than the internal loss, and both decrease with the augment of the Mach number at the exit. In addition, when the angle of attack ranges from -2° to 8°, the total pressure coefficient ascends gradually, due to the reduction of the external loss caused by the less boundary layer flow captured and the invisible change of the internal loss.展开更多
The underwater counter-rotation propeller non-cavitation noise has an obvious mod- ulation characteristic which is due to the interaction of flow and blade. A modulation mecha- nism is presented in this paper. A sound...The underwater counter-rotation propeller non-cavitation noise has an obvious mod- ulation characteristic which is due to the interaction of flow and blade. A modulation mecha- nism is presented in this paper. A sound pressure spectrum model is presented to describe its non-cavitation noise with application of generalized acoustic analogy method, the modulation mechanism is expressed with the improvement of sound pressure model. The power spectrum and modulation spectrum are presented by numerical simulation. Theoretical analysis and nu- merical simulation results are verified by the cavitation tunnel experiment. The modulation model of counter-rotation propeller is beneficial to the prediction modulation characteristics and identification of underwater high-speed vehicles.展开更多
This serial research develops the unique ocean wave power station, which is composed of the floating type platform with a pair of the floats arranged at the interval of one wavelength and the counter-rotating type wav...This serial research develops the unique ocean wave power station, which is composed of the floating type platform with a pair of the floats arranged at the interval of one wavelength and the counter-rotating type wave power unit whose runners are submerged in the seawater at the middle position of the platform. Such profiles make the flow velocity through the runners two times faster than that of the traditional fixed/caisson type OWC (oscillating water column), that is, the runners may be able to get the dynamical energy eight times on the ideal. Besides, the runners counter-drive the inner and the outer armatures of the peculiar generator, respectively, and then the relative rotational speed is two times as fast as the speed of the single runner/armature. Such characteristics make the runner diameter large, namely the output higher, as you request, because the rotational moment of the power unit hardly act on the floating type platform. This paper, as the first step, discusses the platform behaviors at the normally oscillating wave. The platform behavior is affected by not only the length and the amplitude of the wave but also the relation between the weight of the platform and the buoyancy force of the floats.展开更多
Interaction flow field of the sonic air jet through diamond shaped orifices at different incidence angles (10 degrees, 27.5 degrees, 45 degrees and 90 degrees) and total pressures (0.10 MPa and 0. 46 MPa) with a M...Interaction flow field of the sonic air jet through diamond shaped orifices at different incidence angles (10 degrees, 27.5 degrees, 45 degrees and 90 degrees) and total pressures (0.10 MPa and 0. 46 MPa) with a Mach 5.0 freestream was studied experimentally. A 90 degrees circular injector was examined for comparison. Crosssection Mach number contours were acquired by a Pitot-cone five-hole pressure probe. The results indicate that the low Mach semicircular region close to the wall is the wake region. The boundary layer thinning is in the areas adjacent to the wake. For the detached case, the interaction shock extends further into the freestream, and the shock shape has more curvature, also the low-Mach upwash region is larger. The vortices of the plume and the height of the jet interaction shock increase with increasing incidence angle and jet pressure. 90 degrees diamond and circular injector have stronger plume vorticity, and for the circular injector low-Mach region is smaller than that for the diamond injector. Tapered ramp increases the plume vorticity, and the double ramp reduces the level of vorticity. The three-dimensional interaction shock shape was modeled from the surface shock shape, the center plane shock shape, and crosssectional shock shape. The shock total pressure was estimated with the normal component of the Mach number using normal shock theory. The shock induced total pressure losses decrease with decreasing jet incidence angle and injection pressure, where the largest losses are incurred by the 90 degrees, circular injector.展开更多
文摘Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving sequence. Vibration characteristics of a turbofan engine are analyzed by using the two methods. Com- pared with results calculated using transfer matrix method and test results, the two methods are valuable and have great potential in practical applications for vibration characteristic investigation of aero-engines with high thrust-weight ratio.
文摘The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.
文摘This serial research has proposed the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind circumstance. In this paper, the tandem impellers prepared for the counter-rotating type pumping unit were operated at the turbine mode, and the performances and the flow conditions were investigated numerically with accompanying the experimental results. Even though providing the pumping unit for the turbine mode, the maximum hydraulic efficiency is close to one of the counter-rotating type hydroelectric unit designed exclusively for the turbine mode. Besides, the runners/impellers of the unit work evidently so as to coincide the angular momentum change through the front runners/impellers with that through the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet, without the guide vanes. From these results, it can be concluded that this type unit is effective to work at not only the pumping but also the turbine modes.
文摘It is difficult for renewable energy resources to provide constant power with excellent quality for the grid system. This serial research proposes a power stabilization system with a pumped storage to guarantee power quality and capacity, while the outputs from the energy resources are at unstable and/or fluctuating conditions. The power stabilization system with a counter-rotating type pump-turbine unit was prepared and operated at the pumping and the turbine modes. The unit composed of the tandem impellers/runners connected to the inner and the outer armatures of the unique motor/generator. The experiments have verified that this type pump-turbine unit is reasonably effective to stabilize momentarily/instantaneously the fluctuating power from the renewable energy resources.
基金Supported by Program for New Century Excellent Talents in University,China(Grant No.10-0074)
文摘Electrochemical machining (ECM) has been widely used in the aerospace, automotive, defense and medical industries for its many advantages over traditional machining methods. However, the machining accuracy in ECM is to a great extent limited by the stray corrosion of the unwanted material removal. Many attempts have been made to improve the ECM accuracy, such as the use of a pulse power, passivating electrolytes and auxiliary electrodes. However, they are sometimes insufficient for the reduction of the stray removal and have their limitations in many cases. To solve the stray corrosion problem in CRECM, insulating and conductive coatings are respectively used. The different implement processes of the two kinds of coatings are introduced. The effects of the two kinds of shielding coatings on the anode shaping process are investigated. Numerical simulations and experiments are conducted for the comparison of the two coatings. The simulation and experimental results show that both the two kinds of coatings are valid for the reduction of stray corrosion on the top surface of the convex structure. However, for insulating coating, the convex sidewall becomes concave when the height of the convex structure is over 1.26 ram. In addition, it is easy to peel off by the high-speed electrolyte. In contrast, the conductive coating has a strong adhesion, and can be well reserved during the whole machining process. The convex structure fabricated by using a conductive iron coating layer presents a favorable sidewall profile. It is concluded that the conductive coating is more effective for the improvement of the machining quality in CRECM. The proposed shielding coatings can also be employed to reduce the stray corrosion in other schemes of ECM.
基金supported by National Natural Science Foundation of China (Grant Nos. 50879026, 50679027)
文摘With the increasing demand for the clean sustainable power, the turbine design urgently turns to increase the capability significantly toward higher head for generating larger power. Currently, there are many studies in the field of the bulb turbine with single-stage runner, though reports about counter-rotating tandem-runner are rare. However, the further high-head application with the single-stage runner is very difficult to achieve due to the limit of the specific speed. In this paper, a new bulb turbine with the tandem-runner is designed in order to substantially increase the applicable limit toward higher head with larger power. A half of the net head is absorbed by the frontal runner which can generate output power, while the remaining half is absorbed by the rear runner. To generate the Euler energy required for the rear runner, the frontal runner has the counter-rotation against the rear runner so that the counter-rotating tandem-runner can meet the purpose of double head and power under the same size as the conventional bulb turbine. Supply and demand of Euler energy between the two runners are thoroughly optimized through the detailed flow analysis, in order to secure the stable operation. As a result, the interference of Euler energies between the outflow from the frontal runner and the inflow to the rear runner is confirmed to be very small on the counter-rotating interface between the two runners. The prediction method of on-cam performance between the two adjustable runners is also developed numerically, which provides optimal flow between the two runners. This research provides a theoretical basis for the optimal design and operation of the counter-rotating tandem-runner bulb turbines.
文摘The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The technology scheme of the counter-rotating turbine system is proposed, then the experimental simulation of the lubricating oil loop, fuel loop, and seawater loop is completed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.
文摘This paper studies the communication problem at the counter-rotating seam of the low-orbit satellite based on the walker constellation. The counter-rotating seam has a short life cycle, low capacity, and dynamic geometric parameters. To better utilize the scarce link resources at the seam, increase network throughput, and approach the physical limits of the link throughput at the seam, an initial phase condition that maximizes the relative rotational joint link throughput is calculated. In the experimental simulation results using the Iridium system as an example, it is shown that better throughput can be obtained under the initial conditions, and the throughput is improved by about 30%.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.61690223,11561121002,61521093,11227902,11404356,and 11574332)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB16)
文摘Most of the schemes for generating isolated attosecond pulses(IAP) are sensitive to the carrier-envelope phase(CEP)of the driving lasers. We propose a scheme for generating IAP using two-color counter-rotating circularly polarized(TCCRCP) laser pulses. The results demonstrate that the dependence of the IAP generation on CEP stability is largely reduced in this scheme. IAP can be generated at most of CEPs. Therefore, the experiment requirements become lower.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61575077 and 11904122)the Natural Science Foundation of Jilin Province of China(Grant No.20180101225JC)the China Postdoctoral Science Foundation(Grant Nos.2018M641766 and 2019T120232).
文摘We theoretically investigated the properties of the high-order harmonic generation from an argon atom by bichromatic counter-rotating circularly polarized(BCCP)laser field.The harmonic emission processes have been illustrated by numerically solving the two-dimensional time-dependent Schr¨odinger equation of an atom in intense laser fields.It is found that with the decrease of the right-circularly polarized laser wavelength,the harmonic spectra are gradually splitting and the harmonic orders move towards the higher frequency.Meanwhile,the integer and semi-integer harmonic emission will be generated when the frequency ratios of right-and left-circularly polarized lasers are semi-integer.The emission mechanism of the semi-integer-order harmonics has been investigated by using the rules of photon absorption and emission.
基金Project supported by the National Natural Science Foundation of China(Grant No.12074142)the Natural Science Foundation of Jilin Province of China(Grant No.20180101225JC)the Graduate Innovation Fund of Jilin University,China(Grant No.101832020CX337)。
文摘We theoretically investigate the effects of different electronic states as the initial state on the vortex patterns in photoelectron momentum distributions(PMDs)from numerical solutions of the two-dimensional(2D)time-dependent Schrodinger equation(TDSE)of He^(+)with a pair of counter-rotating circularly polarized attosecond pulses.It is found that the number of spiral arms in vortex patterns is equal to the number of the absorbed photons when the initial state is the ground state.However,the number of spiral arms in vortex patterns is always two more than the number of the absorbed photons when the initial state is the excited state.This sensitivity is attributed to the initial electron density distribution.In addition,we have demonstrated the PMDs for different initial electronic states with the same wavelengths and analyzed their corresponding physical mechanisms.It is illustrated that the method presented can be employed to effectively control the distribution of the electron vortices.
基金the National Key Research and Development Program of China(Grant Nos.2019YFA0307700 and 2017YFA0403300)the National Natural Science Foundation of China(Grant Nos.11627807,11774175,11534004,11774129,11975012,and 11604119)+1 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.30916011207)the Jilin Provincial Research Foundation for Basic Research,China(Grant No.20170101153JC).
文摘We investigate high-order harmonic generation from atoms irradiated by bichromatic counter-rotating circularly polarized laser pulses by numerically solving the time-dependent Schrödinger equation.It is found that the minimum energy position of the harmonic spectrum and the non-integer order optical radiation are greatly discrepant for different atomic potentials.By analyzing the quantum trajectory of the harmonic emission,discrepancies among the harmonic spectra from different potentials can be attributed to the action of the potential on the ionized electrons.In addition,based on the influence of the driving light intensity on the overall intensity and ellipticity of higher order harmonics,the physical conditions for generating a high-intensity circularly polarized harmonic can be obtained.
文摘Ocean energy has a potential of providing a large amount of renewable energy around the world. One of the forms of ocean energy, tidal stream power is widely recognized as the continuous, predictable and eco-friendly ocean energy source. Unique tandem propellers that can counter-rotate have been designed to generate electric power effectively from a tidal stream. This type of power unit has several advantages compare to the conventional unit with a single propeller. At the design of the tidal stream power unit, it is important to investigate the structure of the tip vortex tubes shedding to predict the load of the propeller. In this research, we investigated the tip vortex shedding using the CFD method for the conventional single propeller and counter-rotating type tandem propellers and estimated the performance efficiency using RANS (Reynolds Averaged Navier-Stokes) model and we confirmed the limitation of RANS model on the calculation of the tip vortex stretching.
文摘Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. The pump-turbine unit is prepared for the power stabilization system, in this serial research, to provide the constant power with good quality for the grid system, even at the suddenly fluctuating/turbulent output from renewable energies. In the unit, the angular momentum changes through the front impeller/runner must be the same as that through the rear impeller/runner, that is, the axial flow at the outlet should be the same to the axial flow at the inlet. Such flow conditions are advantageous to work at not only the pumping mode but also the turbine mode. This work discusses experimentally the performance of the unit, and verifies that this type unit is very effective to both operating modes.
文摘Tidal stream power units with horizontal-axis propellers are one of promising technologies for generating the renewable green energy. The ebb and flow require that the power unit must operate in bidirectional tidal streams. Hence a tidal stream power unit with counter-rotating type horizontal-axis bidirectional propellers is proposed in this paper. The blades with fully-symmetrical hydrofoils were optimized numerically. The output and flow conditions predicted by the computational fluid dynamics simulations are compared with the results of the wind tunnel experiments at the higher tip speed ratios, which are of expected usual operating conditions of this unit. The numerical and experimental results show good agreements. It is also confirmed that the flow discharged from the counter-rotating type propellers has no swirling component, though the single propeller generates the unacceptable swirling component.
基金supported by the National Natural Science Foundation of China(Nos.12232002,12072017,12002199,and 11721202)。
文摘Three-Dimensional(3D)swirling flow structures,generated by a counter-rotating dualstage swirler in a confined chamber with a confinement ratio of 1.53,were experimentally investigated at Re=2.3×10^(5)using Tomographic Particle Image Velocimetry(Tomo-PIV)and planar Particle Image Velocimetry(PIV).Based on the analysis of the 3D time-averaged swirling flow structures and 3D Proper Orthogonal Decomposition(POD)of the Tomo-PIV data,typical coherent flow structures,including the Corner Recirculation Zone(CRZ),Central Recirculation Zone(CTRZ),and Lip Recirculation Zone(LRZ),were extracted.The counter-rotating dual-stage swirler with a Venturi flare generates the independence process of vortex breakdown from the main stage and pilot stage,leading to the formation of an LRZ and a smaller CTRZ near the nozzle outlet.The confinement squeezes the CRZ to the corner and causes a reverse rotation flow to limit the shape of the CTRZ.A large-scale flow structure caused by the main stage features an explosive breakup,flapping,and Precessing Vortex Core(PVC).The explosive breakup mode dominates the swirling flow structures owing to the expansion and construction of the main jet,whereas the flapping mode is related to the wake perturbation.Confinement limits the expansion of PVC and causes it to contract after the impacting area.
文摘In order to get a deep insight of a submerged inlet on the plane surface, the integrated flow field of the inlet and fuselage has been numerically studied. The investigation is mainly focused on the formation of the total pressure distribution at the exit of the inlet, the structure of the inner flow and the effects of the boundary layer along the fuselage on the performance of the inlet. Moreover, in comparison with the experimental data at different angles of attack, yaws and mass flow ratios, the reliabilities of the computational fluid dynamics(CFD) studied are verified. Results indicate: (1) the CFD results agree well with the experiment results and the relative errors of the total pressure coefficient is less than 1% ; (2) at the inlet's exit, the contour of total pressure obtained by CFD is similar to the experiment result except the contour in the low total pressure zone in CFD is slightly larger; (3) the secondary flow at the cross section behave as two counter-rotating vortices. Along the flow direction, the fields influenced by the vortex pair transport downstream and expand to the whole section at the exit; (4) the total pressure loss at the exit of the submerged inlet can be divided into external loss and internal loss. Usually, the external loss is greater than the internal loss, and both decrease with the augment of the Mach number at the exit. In addition, when the angle of attack ranges from -2° to 8°, the total pressure coefficient ascends gradually, due to the reduction of the external loss caused by the less boundary layer flow captured and the invisible change of the internal loss.
基金supported by the National Natural Science Foundation of China(11704345)the Key Laboratory of Science and Technology for National Defence Foundation(9140C290304140C29133)
文摘The underwater counter-rotation propeller non-cavitation noise has an obvious mod- ulation characteristic which is due to the interaction of flow and blade. A modulation mecha- nism is presented in this paper. A sound pressure spectrum model is presented to describe its non-cavitation noise with application of generalized acoustic analogy method, the modulation mechanism is expressed with the improvement of sound pressure model. The power spectrum and modulation spectrum are presented by numerical simulation. Theoretical analysis and nu- merical simulation results are verified by the cavitation tunnel experiment. The modulation model of counter-rotation propeller is beneficial to the prediction modulation characteristics and identification of underwater high-speed vehicles.
文摘This serial research develops the unique ocean wave power station, which is composed of the floating type platform with a pair of the floats arranged at the interval of one wavelength and the counter-rotating type wave power unit whose runners are submerged in the seawater at the middle position of the platform. Such profiles make the flow velocity through the runners two times faster than that of the traditional fixed/caisson type OWC (oscillating water column), that is, the runners may be able to get the dynamical energy eight times on the ideal. Besides, the runners counter-drive the inner and the outer armatures of the peculiar generator, respectively, and then the relative rotational speed is two times as fast as the speed of the single runner/armature. Such characteristics make the runner diameter large, namely the output higher, as you request, because the rotational moment of the power unit hardly act on the floating type platform. This paper, as the first step, discusses the platform behaviors at the normally oscillating wave. The platform behavior is affected by not only the length and the amplitude of the wave but also the relation between the weight of the platform and the buoyancy force of the floats.
文摘Interaction flow field of the sonic air jet through diamond shaped orifices at different incidence angles (10 degrees, 27.5 degrees, 45 degrees and 90 degrees) and total pressures (0.10 MPa and 0. 46 MPa) with a Mach 5.0 freestream was studied experimentally. A 90 degrees circular injector was examined for comparison. Crosssection Mach number contours were acquired by a Pitot-cone five-hole pressure probe. The results indicate that the low Mach semicircular region close to the wall is the wake region. The boundary layer thinning is in the areas adjacent to the wake. For the detached case, the interaction shock extends further into the freestream, and the shock shape has more curvature, also the low-Mach upwash region is larger. The vortices of the plume and the height of the jet interaction shock increase with increasing incidence angle and jet pressure. 90 degrees diamond and circular injector have stronger plume vorticity, and for the circular injector low-Mach region is smaller than that for the diamond injector. Tapered ramp increases the plume vorticity, and the double ramp reduces the level of vorticity. The three-dimensional interaction shock shape was modeled from the surface shock shape, the center plane shock shape, and crosssectional shock shape. The shock total pressure was estimated with the normal component of the Mach number using normal shock theory. The shock induced total pressure losses decrease with decreasing jet incidence angle and injection pressure, where the largest losses are incurred by the 90 degrees, circular injector.