Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the d...Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the dynamic response,failure mode,and spectral characteristics of rock slope with HLFS under strong earthquake conditions were investigated based on the large-scale shaking table model test.On this basis,multiple sets of numerical calculation models were further established by UDEC discrete element program.Five influencing factors were considered in the parametric study of numerical simulations,including slope height,slope angle,bedding-plane spacing and secondary joint spacing as well as bedrock dip angle.The results showed that the failure process of rock slope with HLFS under earthquake action is mainly divided into four phases,i.e.,the tensile crack of the slope shoulder joints and shear dislocation at the top bedding plane,the extension of vertical joint cracks and increase of shear displacement,the formation of step-through sliding surfaces and the instability,and finally collapse of fractured rock mass.The acceleration response of slopes exhibits elevation amplification effect and surface effect.Numerical simulations indicate that the seismic stability of slopes with HLFS exhibits a negative correlation with slope height and angle,but a positive correlation with bedding-plane spacing,joint spacing,and bedrock dip angle.The results of this study can provide a reference for seismic stability evaluation of weathered rock slopes.展开更多
The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reve...The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reveal the landslide mechanism,taking the north slope of Fushun West Open-pit Mine as an example,this paper analyzed the failure mechanism of different landslides with monitoring and field surveys,and simulated the evolution of landslides.The study indicated that when the green mudstone(hard rock)of the anti-dip slope contains siltized intercalations(soft rock),the existence of weak layers not only aggravates the toppling deformation of anti-dip layered slope with high dip,but also causes the shear failure of anti-dip layered slope with stable low dip.The shear failure including subsidence induced sliding and wedge failure mainly exists in the unloading zone of the slope.Its failure depth and failure time were far less than that of toppling failure.In terms of the development characteristics of deformation,toppling deformation has the long-term and progressive characteristics,but shear failure deformation has the abrupt and transient characteristics.This study has deepened the understanding of such slope landslide mechanism,and can provide reference for similar engineering.展开更多
Water-rock interaction and groundwater mixing are important phenomena in understanding hydrogeological systems and the stability of rock slopes especially those consisting largely of moderately watersoluble minerals l...Water-rock interaction and groundwater mixing are important phenomena in understanding hydrogeological systems and the stability of rock slopes especially those consisting largely of moderately watersoluble minerals like calcite. In this study, the hydrogeological and geochemical evolutions of groundwater in a limestone quarry composed of three strata: limestone layer(covering), interbedded layer under the covering layer, and slaty greenstone layer(basement) were investigated. Water-rock interaction in the open-pit limestone quarry was evaluated using PHREEQC, while hierarchical cluster analysis(HCA)and principal component analysis(PCA) were used to classify and identify water sources responsible for possible groundwater mixing within rock layers. In addition, Geochemist's Workbench was applied to estimate the mixing fractions to clarify sensitive zones that may affect rock slope stability. The results showed that the changes in Ca2+and HCO3àconcentrations of several groundwater samples along the interbedded layer could be attributed to mixing groundwater from the limestone layer and that from slaty greenstone layer. Based on the HCA and PCA results, groundwaters were classified into several types depending on their origin:(1) groundwater from the limestone layer(LO),(2) mixed groundwater flowing along the interbedded layer(e.g., groundwater samples L-7, L-11, S-3 and S-4), and(3) groundwater originating from the slaty greenstone layer(SO). The mixing fractions of 41% LO: 59% SO, 64% LO: 36% SO, 43%LO: 57% SOand 25% LO: 75% SOon the normal days corresponded to groundwaters L-7, L-11, S-3 and S-4,respectively, while the mixing fractions of groundwaters L-7 and L-11(61% LO: 39% SOand 93% LO: 7% SO,respectively) on rainy days became the majority of groundwater originating from the limestone layer.These indicate that groundwater along the interbedded layer significantly affected the stability of rock slopes by enlarging multi-breaking zones in the layer through calcite dissolution and inducing high water pressure, tension cracks and potential sliding plane along this layer particularly during intense rainfall episodes.展开更多
In order to investigate the effect of a weak intercalation on slope stability, a large-scale shaking table model test was conducted to study the dynamic response of rock slope models with weak intercalation.The dynami...In order to investigate the effect of a weak intercalation on slope stability, a large-scale shaking table model test was conducted to study the dynamic response of rock slope models with weak intercalation.The dynamic response of the prototype slopes were studied in laboratory with the consideration of law of similitude. The initiation failure was observed in the rock slope model with a counter-tilt thin-weak intercalation firstly, not in the slope model with a horizontal thin-weak intercalation. Furthermore, it was interesting that the fracture site is shifted from crest top to the slope surface near the weak intercalation, which is different with the location of failure position in a normal layered slope. We also discussed the effect of the dip angle and the thickness of weak intercalation on the failure mechanism and instability mode of the layered rock slope. From the experimental result, it was noted that the stability of the slope with a counter-tilt weak intercalation could be worse than that of the other slopes under seismic excitation. The findings showed the difference of failure in slopes with a horizontal and counter weak intercalation, and implicated the further evaluation of failure of layered slopes caused by seismic loads.展开更多
This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basi...This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basic characteristics, kinematic characteristics, initiation mechanisms and physical mechanical parameters of the Daguangbao landslide, generalized a landslide prototype, and established a geological model and performed simulation tests. Based on the seismic wave propagation theory of rock-soil mass, rock fracture mechanics and the effective stress principle, we found that the void space gas effect is due to the occurrence of excess void space gas pressure when the dynamic response of seismic loads impacts the void space gas in weak intercalated layers of the slope. The excess void space gas pressure generated by the vibration(earthquake) damages the rock mass around the void space with a certain regularity. The model test results show that the effective shear strength of the rock mass can be reduced by 4.4% to 21.6% due to the void space gas effect.展开更多
基金supported by Central Guiding Local Science and Technology Development Special Fund Project(No.ZYYD2023B02)the National Natural Science Foundation of China(Nos.52078432 and 52168066)the Scientific Research Project of China Railway First Survey and Design Institute Group Co.(No.20-06).
文摘Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the dynamic response,failure mode,and spectral characteristics of rock slope with HLFS under strong earthquake conditions were investigated based on the large-scale shaking table model test.On this basis,multiple sets of numerical calculation models were further established by UDEC discrete element program.Five influencing factors were considered in the parametric study of numerical simulations,including slope height,slope angle,bedding-plane spacing and secondary joint spacing as well as bedrock dip angle.The results showed that the failure process of rock slope with HLFS under earthquake action is mainly divided into four phases,i.e.,the tensile crack of the slope shoulder joints and shear dislocation at the top bedding plane,the extension of vertical joint cracks and increase of shear displacement,the formation of step-through sliding surfaces and the instability,and finally collapse of fractured rock mass.The acceleration response of slopes exhibits elevation amplification effect and surface effect.Numerical simulations indicate that the seismic stability of slopes with HLFS exhibits a negative correlation with slope height and angle,but a positive correlation with bedding-plane spacing,joint spacing,and bedrock dip angle.The results of this study can provide a reference for seismic stability evaluation of weathered rock slopes.
基金supported by the National Key Research and Development Program of China(Nos.2022YFC2903902 and 2022YFC2903903)the National Natural Science Foundation of China(Nos.U1903216 and 52174070).
文摘The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reveal the landslide mechanism,taking the north slope of Fushun West Open-pit Mine as an example,this paper analyzed the failure mechanism of different landslides with monitoring and field surveys,and simulated the evolution of landslides.The study indicated that when the green mudstone(hard rock)of the anti-dip slope contains siltized intercalations(soft rock),the existence of weak layers not only aggravates the toppling deformation of anti-dip layered slope with high dip,but also causes the shear failure of anti-dip layered slope with stable low dip.The shear failure including subsidence induced sliding and wedge failure mainly exists in the unloading zone of the slope.Its failure depth and failure time were far less than that of toppling failure.In terms of the development characteristics of deformation,toppling deformation has the long-term and progressive characteristics,but shear failure deformation has the abrupt and transient characteristics.This study has deepened the understanding of such slope landslide mechanism,and can provide reference for similar engineering.
文摘Water-rock interaction and groundwater mixing are important phenomena in understanding hydrogeological systems and the stability of rock slopes especially those consisting largely of moderately watersoluble minerals like calcite. In this study, the hydrogeological and geochemical evolutions of groundwater in a limestone quarry composed of three strata: limestone layer(covering), interbedded layer under the covering layer, and slaty greenstone layer(basement) were investigated. Water-rock interaction in the open-pit limestone quarry was evaluated using PHREEQC, while hierarchical cluster analysis(HCA)and principal component analysis(PCA) were used to classify and identify water sources responsible for possible groundwater mixing within rock layers. In addition, Geochemist's Workbench was applied to estimate the mixing fractions to clarify sensitive zones that may affect rock slope stability. The results showed that the changes in Ca2+and HCO3àconcentrations of several groundwater samples along the interbedded layer could be attributed to mixing groundwater from the limestone layer and that from slaty greenstone layer. Based on the HCA and PCA results, groundwaters were classified into several types depending on their origin:(1) groundwater from the limestone layer(LO),(2) mixed groundwater flowing along the interbedded layer(e.g., groundwater samples L-7, L-11, S-3 and S-4), and(3) groundwater originating from the slaty greenstone layer(SO). The mixing fractions of 41% LO: 59% SO, 64% LO: 36% SO, 43%LO: 57% SOand 25% LO: 75% SOon the normal days corresponded to groundwaters L-7, L-11, S-3 and S-4,respectively, while the mixing fractions of groundwaters L-7 and L-11(61% LO: 39% SOand 93% LO: 7% SO,respectively) on rainy days became the majority of groundwater originating from the limestone layer.These indicate that groundwater along the interbedded layer significantly affected the stability of rock slopes by enlarging multi-breaking zones in the layer through calcite dissolution and inducing high water pressure, tension cracks and potential sliding plane along this layer particularly during intense rainfall episodes.
基金financially supported by the Research and Innovation Team of Chengdu University of TechnologyProject of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Grant No. SKLGP2013Z002)
文摘In order to investigate the effect of a weak intercalation on slope stability, a large-scale shaking table model test was conducted to study the dynamic response of rock slope models with weak intercalation.The dynamic response of the prototype slopes were studied in laboratory with the consideration of law of similitude. The initiation failure was observed in the rock slope model with a counter-tilt thin-weak intercalation firstly, not in the slope model with a horizontal thin-weak intercalation. Furthermore, it was interesting that the fracture site is shifted from crest top to the slope surface near the weak intercalation, which is different with the location of failure position in a normal layered slope. We also discussed the effect of the dip angle and the thickness of weak intercalation on the failure mechanism and instability mode of the layered rock slope. From the experimental result, it was noted that the stability of the slope with a counter-tilt weak intercalation could be worse than that of the other slopes under seismic excitation. The findings showed the difference of failure in slopes with a horizontal and counter weak intercalation, and implicated the further evaluation of failure of layered slopes caused by seismic loads.
基金funded by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (No.SKLGP2016Z015)the Natural Science Foundation of China (No. 41572308)
文摘This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basic characteristics, kinematic characteristics, initiation mechanisms and physical mechanical parameters of the Daguangbao landslide, generalized a landslide prototype, and established a geological model and performed simulation tests. Based on the seismic wave propagation theory of rock-soil mass, rock fracture mechanics and the effective stress principle, we found that the void space gas effect is due to the occurrence of excess void space gas pressure when the dynamic response of seismic loads impacts the void space gas in weak intercalated layers of the slope. The excess void space gas pressure generated by the vibration(earthquake) damages the rock mass around the void space with a certain regularity. The model test results show that the effective shear strength of the rock mass can be reduced by 4.4% to 21.6% due to the void space gas effect.