A prestressed elastic medium containing a mode-Ⅲcrack is studied by means of the couple stress theory(CST).Based on the CST under initial stresses,a governing differential equation along with a mixed boundary value p...A prestressed elastic medium containing a mode-Ⅲcrack is studied by means of the couple stress theory(CST).Based on the CST under initial stresses,a governing differential equation along with a mixed boundary value problem is established.The singularities of the couple stress and force stress near the crack tips are analyzed through the asymptotic crack-tip fields resulting from the characteristic expansion method.To determine their intensity,a hypersingular integral equation is derived and numerically solved with the help of the Chebyshev polynomial.The obtained results show a strong size-dependence of the out-of-plane displacement on the crack and the couple stress intensity factor(CSIF)and the force stress intensity factor(FSIF)around the crack tips.The symmetric part of the shear stress has no singularity,and the skew-symmetric part related to the couple stress exhibits an r^(-3/2)singularity,in which r is the distance from the crack tip.The initial stresses also affect the crack tearing displacement and the CSIF and FSIF.展开更多
A three-dimensional Darcy Forchheimer mixed convective flow of a couple stress hybrid nanofluid flow through a vertical plate by means of the double diffusion Cattaneo-Christov model is presented in this study.The inf...A three-dimensional Darcy Forchheimer mixed convective flow of a couple stress hybrid nanofluid flow through a vertical plate by means of the double diffusion Cattaneo-Christov model is presented in this study.The influence of highorder velocity slip flow,as well as a passive and active control,is also considered.The motive of the research is to develop a computational model,using cobalt ferrite(Co Fe_(2)O_(4))and copper(Cu)nanoparticles(NPs)in the carrier fluid water,to magnify the energy and mass communication rate and boost the efficiency and performance of thermal energy conduction for a variety of commercial and biological purposes.The proposed model becomes more significant,with an additional effect of non-Fick's mass flux and Fourier's heat model to report the energy and mass passage rate.The results are obtained through the computational strategy parametric continuation method.The figures are plotted to reveal the physical sketch of the obtained solution,while the statistical assessment has been evaluated through tables.It has been observed that the dispersion of Cu and Co Fe_(2)O_(4)NPs to the base fluid significantly enhances the velocity and thermal conductivity of water,which is the most remarkable property of these NPs from the industrial point of view.展开更多
In this paper,the detailed analysis of the influence of thermal and non-Newtonian aspects of lubricant(couple stress fluid)on EHL line contact as a function of slide-roll ratio is presented.The novel low complexity FA...In this paper,the detailed analysis of the influence of thermal and non-Newtonian aspects of lubricant(couple stress fluid)on EHL line contact as a function of slide-roll ratio is presented.The novel low complexity FAS(full approximation scheme),of the multigrid scheme,with Jacobi dipole and Gauss Seidel relaxation is used for the solution of coupled equations viz.modified Reynolds equation,film thickness equation and energy equation satisfying appropriate boundary conditions.The analysis reveals the combined influence of non-Newtonian,thermal and slide-roll ratio(of bearing moving with different speeds)on pressure,film thickness and pressure spike covering a wide range of physical parameters of interest.Results show that pressure spike is strongly influenced by thermal,slide-roll ratio and non-Newtonian character of lubricant with negligible effect on the overall pressure distribution.Also,the minimum film thickness is slightly altered and it increases with the increase in the couple stress parameter.These findings confirm the importance of non-Newtonian and thermal effects in the study of EHL.展开更多
The instability of the rotor dynamic system supported by oil journal bearing is encountered frequently, such as the half speed whirl of the rotor, which is caused by oil film lubricant with nonlinearity. Currently, mo...The instability of the rotor dynamic system supported by oil journal bearing is encountered frequently, such as the half speed whirl of the rotor, which is caused by oil film lubricant with nonlinearity. Currently, more attention is paid to the physical characteristics of oil film due to an oil-lubricated journal bearing being the important supporting component of the bearing-rotor systems and its nonlinear nature. In order to analyze the lubrication characteristics of journal bearings efficiently and save computational c[~brts, an approximate solution of nonlinear oil film forces of a finite length turbulent journal bearing with couple stress flow is proposed based on Sommerfeld and Ocvirk numbers. Reynolds equation in lubrication of a finite length turbulent .journal bearing is solved based on multi-parametric principle. Load-carrying capacity of nonlinear oil film is obtained, and the results obtained by different methods are compared. The validation of the proposed method is verified, meanwhile, the relationships of load-carrying capacity versus eccentricity ratio and width-to-diameter ratio under turbulent and couple stress working conditions are analyzed. The numerical results show that both couple stress flow and eccentricity ratio have obvious influence on oil film pressure distribution, and the proposed method approximates the load-carrying capacity of turbulent journal bearings efficiently with various width-to-diameter ratios. This research proposes an approximate solution of oil film load-carrying capacity of turbulent journal bearings with different width-to-diameter ratios, whicb are suitable for high eccentricity ratios and heavy loads.展开更多
Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform...Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform temperature rising.Size dependency is included in governing equations based on the modified couple stress theory.Hamilton’s principle is used to derive governing equations of the cylindrical micro/nano shell.Solution procedure is developed using Navier technique for simply-supported boundary conditions.The numerical results are presented to investigate the effect of significant parameters such as some dimensionless geometric parameters,material properties,applied voltages and temperature rising on the free vibration responses.展开更多
Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the vel...Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the velocity and the boundary layer thickness are decreasing functions of the couple stress fluid parameter. However, the temperature and surface heat transfer increase when the values of the couple stress fluid parameter increase. The velocity and temperature fields increase with an increase in the melting process of the stretching sheet.展开更多
To take into account the couple stress effects, a modified Reynolds equation is derived for dynamically loaded journal beatings with the consideration of the elasticity of the liner. The numerical results show that th...To take into account the couple stress effects, a modified Reynolds equation is derived for dynamically loaded journal beatings with the consideration of the elasticity of the liner. The numerical results show that the influence of couple stresses on the bearing characteristics is significant. Compared with Newtonian lubricants, lubricants with couple stresses increase the fluid film pressure, as a result enhance the load-carrying capacity and reduce the friction coefficient. However, since the elasticity of the liner weakens the couple stress effect, elastic liners yield a reduction in the load-carrying capacity and an increase in the friction coefficient. The elastic deformation of the bearing liner should be considered in an accurate performance evaluation of the journal bearing.展开更多
A new state vector is presented for symplectic solution to three dimensional couple stress problem. Without relying on the analogy relationship, the dual PDEs of couple stress problem are derived by a new state vector...A new state vector is presented for symplectic solution to three dimensional couple stress problem. Without relying on the analogy relationship, the dual PDEs of couple stress problem are derived by a new state vector. The duality solution methodology in a new form is thus extended to three dimensional couple stress. A new symplectic orthonormality relationship is proved. The symplectic solution to couple stress theory based a new state vector is more accordant with the custom of classical elasticity and is more convenient to process boundary conditions. A Hamilton mixed energy variational principle is derived by the integral method.展开更多
The linear and nonlinear torsional free vibration analyses of functionMly graded micro/nuno-tubes (FGMTs) are analytically investigated based on the couple stress theory. The employed non-classical continuum theory ...The linear and nonlinear torsional free vibration analyses of functionMly graded micro/nuno-tubes (FGMTs) are analytically investigated based on the couple stress theory. The employed non-classical continuum theory contains one material length scale parameter, which can capture the small scale effect. The FGMT model accounts for the through-radius power-law variation of a two-constituent material. Hamilton's principle is used to develop the non-classical nonlinear governing equation. To study the effect of the boundary conditions, two types of end conditions, i.e., fixed-fixed and fixed-free, are considered. The derived boundary value governing equation is of the fourthorder, and is solved by the homotopy analysis method (HAM). This method is based on the Taylor series with an embedded parameter and is capable of providing very good approximations by means of only a few terms, if the initial guess and the auxiliary linear operator are properly selected. The analytical expressions are developed for the linear and nonlinear natural frequencies, which can be conveniently used to investigate the effects of the dimensionless length scale parameter, the material gradient index, and the vibration amplitude on the natural frequencies of FGMTs.展开更多
Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the d...Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the determination of material length-scale. Based on the couple stress elasto-plasticity, an analytical solution of thin cantilever beams is firstly presented, and the solution can be regarded as an extension of the elastic and rigid-plastic solutions of pure bending beam. A comparison with numerical results shows that the current analytical solution is reliable for the case of σ0 〈〈 H 〈〈 E, where σ0 is the initial yield strength, H is the hardening modulus and E is the elastic modulus. Fortunately, the above mentioned condition can be satisfied for many metal materials, and thus the solution can be used to determine the material length-scale of micro-structures in conjunction with the experiment of cantilever beams in the micro-scale.展开更多
The purpose is to reestablish the balance laws of momentum, angular momentum and energy and to derive the corresponding local and nonlocal balance equations for micromorphic continuum mechanics and couple stress theor...The purpose is to reestablish the balance laws of momentum, angular momentum and energy and to derive the corresponding local and nonlocal balance equations for micromorphic continuum mechanics and couple stress theory. The desired results for micromorphic continuum mechanics and couple stress theory are naturally obtained via direct transitions and reductions from the coupled conservation law of energy for micropolar continuum theory, respectively. The basic balance laws and equations for micromorphic continuum mechanics and couple stress theory are constituted by combining these results derived here and the traditional conservation laws and equations of mass and microinertia and the entropy inequality. The incomplete degrees of the former related continuum theories are clarified. Finally, some special cases are conveniently derived.展开更多
The bending of the Euler-Bernoulli micro-beam has been extensively modeled based on the modified couple stress(MCS)theory.Although many models have been incorporated into the literature,there is still room for introdu...The bending of the Euler-Bernoulli micro-beam has been extensively modeled based on the modified couple stress(MCS)theory.Although many models have been incorporated into the literature,there is still room for introducing an improved model in this context.In this work,we investigate the thermoelastic vibration of a micro-beam exposed to a varying temperature due to the application of the initial stress employing the MCS theory and generalized thermoelasticity.The MCS theory is used to investigate the material length scale effects.Using the Laplace transform,the temperature,deflection,displacement,flexure moment,and stress field variables of the micro-beam are derived.The effects of the temperature pulse and couple stress on the field distributions of the micro-beam are obtained numerically and graphically introduced.The numerical results indicate that the temperature pulse and couple stress have a significant effect on all field variables.展开更多
A size-dependent computational approach for bending,free vibration and buckling analyses of isotropic and sandwich functionally graded(FG)microplates is in this study presented.We consider both shear deformation and s...A size-dependent computational approach for bending,free vibration and buckling analyses of isotropic and sandwich functionally graded(FG)microplates is in this study presented.We consider both shear deformation and small scale effects through the generalized higher order shear deformation theory and modified couple stress theory(MCST).The present model only retains a single material length scale parameter for capturing properly size effects.A rule of mixture is used to model material properties varying through the thickness of plates.The principle of virtual work is used to derive the discrete system equations which are approximated by moving Kriging interpolation(MKI)meshfree method.Numerical examples consider the inclusions of geometrical parameters,volume fraction,boundary conditions and material length scale parameter.Reliability and effectiveness of the present method are confirmed through numerical results.展开更多
Investigation concerning peristaltic motion of couple stress fluid is made. An incompressible couple stress fluid occupies the porous medium. Mathematical anal- ysis is presented through large wavelength and low Reyno...Investigation concerning peristaltic motion of couple stress fluid is made. An incompressible couple stress fluid occupies the porous medium. Mathematical anal- ysis is presented through large wavelength and low Reynolds number. Exact analytical expressions of axial velocity, volume flow rate, pressure gradient, and stream function are calculated as a function of couple stress parameter. The essential feature of the analysis is a full description of influence of couple stress parameter and permeability parameter on the pressure, frictional force, mechanical efficiency, and trapping.展开更多
The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model introduces the l...The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model introduces the length dependent effect based on the material constant and dynamic viscosity. Also, it introduces the biharmonic operator in the Navier-Stokes equations, which is absent in the case of Newtonian fluids. The solution to the time-dependent non-linear and coupled governing equations is carried out with an unconditionally stable Crank-Nicolson type of numerical schemes. Numerical results for the transient flow variables, the average wall shear stress, the Nusselt number, and the Sherwood number are shown graphically for both generative and destructive reactions. The time to reach the temporal maximum increases as the reaction constant K increases. The average values of the wall shear stress and the heat transfer rate decrease as K increases, while increase with the increase in the Sherwood number.展开更多
The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elas...The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios, it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.展开更多
To obviate the complexities of the straight forward couple stress finite element method,the penalty-based couple stress finite element method(named PcouFEM)within the framework of the Cosserat continuum is utilized to...To obviate the complexities of the straight forward couple stress finite element method,the penalty-based couple stress finite element method(named PcouFEM)within the framework of the Cosserat continuum is utilized to obtain the approximate solution by relaxing the C1 continuity.To examine the performance of the PcouFEM,three well known numerical examples are investigated.For the analysis on stress concentration around the circular hole of the plane strain specimen,it was found that as long as the penalty factor G_(c) is not less than 5 times the shear modulus of the classical continuum G(i.e.,G_(c)≥5G),the stress concentration factors calculated by the PcouFEM with the reduced integration scheme agree well with the analytical solutions.For the strain localization analysis in the uniaxial compression test,it was observed that by applying the PcouFEM,the pathologically mesh-dependent problem associated with the conventional FEM can be alleviated or even removed,and based on numerical simulations,it is recommended to define 5G≤G_(c)≤10G from the perspective of numerical accuracy.For the soil slope subjected to an eccentric load through the rigid strip footing,it was found that the mesh-dependent problem of the shear band simulation can be largely alleviated by applying the PcouFEM.展开更多
This paper studies the static deformation behavior of a piezoelectric micromachined ultrasonic transducer (PMUT) actuated by a strong external electric field. The transducer membrane consists of a piezoelectric laye...This paper studies the static deformation behavior of a piezoelectric micromachined ultrasonic transducer (PMUT) actuated by a strong external electric field. The transducer membrane consists of a piezoelectric layer, a passive layer and two electrode layers. The nonlinearities of the piezoelectric layer caused by electrostriction under a strong electric field are analyzed. Because the thickness of the transducer membrane is on the microscale, the size dependence of the deformation behavior is evaluated using the couple stress theory. The results show that the optimal ratio of the top electrode diameter and the membrane diameter is around 0.674. It is also found that this optimal value does not depend on any other parameters if the thicknesses of the two electrodes are negligible compared with those of the piezo- electric and passive layers. In addition, the nonlinearities of the piezoelectric layer will become stronger along with the increase of the electric field, which means that softening of the membrane stiffness occurs when a strong external electric field is applied. Meanwhile, the optimal thickness ratio for the passive layer and the piezoelectric layer is not equal to 1.0 which is usually adopted by previous researchers. Because there exists size dependence of membrane deforma-tion, the optimal value of this thickness ratio needs to be greater than 1.0 on the microscale.展开更多
An approximate analytical model for calculating the pull-in voltage of a stepped cantilever-type radio frequency (RF) micro electro-mechanical system (MEMS) switch is developed based on the Euler-Bernoulli beam an...An approximate analytical model for calculating the pull-in voltage of a stepped cantilever-type radio frequency (RF) micro electro-mechanical system (MEMS) switch is developed based on the Euler-Bernoulli beam and a modified couple stress theory, and is validated by comparison with the finite element results. The sensitivity functions of the pull-in voltage to the designed parameters are derived based on the proposed model. The sensitivity investigation shows that the pull-in voltage sensitivities increase/decrease nonlinearly with the increases in the designed parameters. For the stepped cantilever beam, there exists a nonzero optimal dimensionless length ratio, where the pull-in voltage is insensitive. The optimal value of the dimensionless length ratio only depends on the dimensionless width ratio, and can be obtained by solving a nonlinear equation. The determination of the designed parameters is discussed, and some recommendations are made for the RF MEMS switch optimization.展开更多
The Hall and ion-slip effects on fully developed electrically conducting couple stress fluid flow between vertical parallel plates in the presence of a temperature dependent heat source are investigated. The governing...The Hall and ion-slip effects on fully developed electrically conducting couple stress fluid flow between vertical parallel plates in the presence of a temperature dependent heat source are investigated. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using the homotopy analysis method (HAM). The effects of the magnetic parameter, Hall parameter, ion-slip parameter and couple stress fluid parameter on velocity and temperature are discussed and shown graphically展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11672336,12072374)。
文摘A prestressed elastic medium containing a mode-Ⅲcrack is studied by means of the couple stress theory(CST).Based on the CST under initial stresses,a governing differential equation along with a mixed boundary value problem is established.The singularities of the couple stress and force stress near the crack tips are analyzed through the asymptotic crack-tip fields resulting from the characteristic expansion method.To determine their intensity,a hypersingular integral equation is derived and numerically solved with the help of the Chebyshev polynomial.The obtained results show a strong size-dependence of the out-of-plane displacement on the crack and the couple stress intensity factor(CSIF)and the force stress intensity factor(FSIF)around the crack tips.The symmetric part of the shear stress has no singularity,and the skew-symmetric part related to the couple stress exhibits an r^(-3/2)singularity,in which r is the distance from the crack tip.The initial stresses also affect the crack tearing displacement and the CSIF and FSIF.
基金Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number(RGP.2/155/43)。
文摘A three-dimensional Darcy Forchheimer mixed convective flow of a couple stress hybrid nanofluid flow through a vertical plate by means of the double diffusion Cattaneo-Christov model is presented in this study.The influence of highorder velocity slip flow,as well as a passive and active control,is also considered.The motive of the research is to develop a computational model,using cobalt ferrite(Co Fe_(2)O_(4))and copper(Cu)nanoparticles(NPs)in the carrier fluid water,to magnify the energy and mass communication rate and boost the efficiency and performance of thermal energy conduction for a variety of commercial and biological purposes.The proposed model becomes more significant,with an additional effect of non-Fick's mass flux and Fourier's heat model to report the energy and mass passage rate.The results are obtained through the computational strategy parametric continuation method.The figures are plotted to reveal the physical sketch of the obtained solution,while the statistical assessment has been evaluated through tables.It has been observed that the dispersion of Cu and Co Fe_(2)O_(4)NPs to the base fluid significantly enhances the velocity and thermal conductivity of water,which is the most remarkable property of these NPs from the industrial point of view.
文摘In this paper,the detailed analysis of the influence of thermal and non-Newtonian aspects of lubricant(couple stress fluid)on EHL line contact as a function of slide-roll ratio is presented.The novel low complexity FAS(full approximation scheme),of the multigrid scheme,with Jacobi dipole and Gauss Seidel relaxation is used for the solution of coupled equations viz.modified Reynolds equation,film thickness equation and energy equation satisfying appropriate boundary conditions.The analysis reveals the combined influence of non-Newtonian,thermal and slide-roll ratio(of bearing moving with different speeds)on pressure,film thickness and pressure spike covering a wide range of physical parameters of interest.Results show that pressure spike is strongly influenced by thermal,slide-roll ratio and non-Newtonian character of lubricant with negligible effect on the overall pressure distribution.Also,the minimum film thickness is slightly altered and it increases with the increase in the couple stress parameter.These findings confirm the importance of non-Newtonian and thermal effects in the study of EHL.
基金Supported by National Natural Science Foundation of China(Grant No.51375380)Open Project of State Key Laboratory for Strength and Vibration of Mechanical Structures of China(Grant No.SV2014-KF-08)Shaanxi Provincial Natural Science Foundation of China(Grant No.2013JQ7008)
文摘The instability of the rotor dynamic system supported by oil journal bearing is encountered frequently, such as the half speed whirl of the rotor, which is caused by oil film lubricant with nonlinearity. Currently, more attention is paid to the physical characteristics of oil film due to an oil-lubricated journal bearing being the important supporting component of the bearing-rotor systems and its nonlinear nature. In order to analyze the lubrication characteristics of journal bearings efficiently and save computational c[~brts, an approximate solution of nonlinear oil film forces of a finite length turbulent journal bearing with couple stress flow is proposed based on Sommerfeld and Ocvirk numbers. Reynolds equation in lubrication of a finite length turbulent .journal bearing is solved based on multi-parametric principle. Load-carrying capacity of nonlinear oil film is obtained, and the results obtained by different methods are compared. The validation of the proposed method is verified, meanwhile, the relationships of load-carrying capacity versus eccentricity ratio and width-to-diameter ratio under turbulent and couple stress working conditions are analyzed. The numerical results show that both couple stress flow and eccentricity ratio have obvious influence on oil film pressure distribution, and the proposed method approximates the load-carrying capacity of turbulent journal bearings efficiently with various width-to-diameter ratios. This research proposes an approximate solution of oil film load-carrying capacity of turbulent journal bearings with different width-to-diameter ratios, whicb are suitable for high eccentricity ratios and heavy loads.
基金The authors would like to thank the Iranian Nanotechnology Development Committee for their financial support.
文摘Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform temperature rising.Size dependency is included in governing equations based on the modified couple stress theory.Hamilton’s principle is used to derive governing equations of the cylindrical micro/nano shell.Solution procedure is developed using Navier technique for simply-supported boundary conditions.The numerical results are presented to investigate the effect of significant parameters such as some dimensionless geometric parameters,material properties,applied voltages and temperature rising on the free vibration responses.
基金supported by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia
文摘Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the velocity and the boundary layer thickness are decreasing functions of the couple stress fluid parameter. However, the temperature and surface heat transfer increase when the values of the couple stress fluid parameter increase. The velocity and temperature fields increase with an increase in the melting process of the stretching sheet.
基金Project (No. 571123) supported by the Scientific Research SpecialFoundation for the Excellent Youth Teacher of Shanghai University byEducation Committee of Shanghai, China
文摘To take into account the couple stress effects, a modified Reynolds equation is derived for dynamically loaded journal beatings with the consideration of the elasticity of the liner. The numerical results show that the influence of couple stresses on the bearing characteristics is significant. Compared with Newtonian lubricants, lubricants with couple stresses increase the fluid film pressure, as a result enhance the load-carrying capacity and reduce the friction coefficient. However, since the elasticity of the liner weakens the couple stress effect, elastic liners yield a reduction in the load-carrying capacity and an increase in the friction coefficient. The elastic deformation of the bearing liner should be considered in an accurate performance evaluation of the journal bearing.
文摘A new state vector is presented for symplectic solution to three dimensional couple stress problem. Without relying on the analogy relationship, the dual PDEs of couple stress problem are derived by a new state vector. The duality solution methodology in a new form is thus extended to three dimensional couple stress. A new symplectic orthonormality relationship is proved. The symplectic solution to couple stress theory based a new state vector is more accordant with the custom of classical elasticity and is more convenient to process boundary conditions. A Hamilton mixed energy variational principle is derived by the integral method.
文摘The linear and nonlinear torsional free vibration analyses of functionMly graded micro/nuno-tubes (FGMTs) are analytically investigated based on the couple stress theory. The employed non-classical continuum theory contains one material length scale parameter, which can capture the small scale effect. The FGMT model accounts for the through-radius power-law variation of a two-constituent material. Hamilton's principle is used to develop the non-classical nonlinear governing equation. To study the effect of the boundary conditions, two types of end conditions, i.e., fixed-fixed and fixed-free, are considered. The derived boundary value governing equation is of the fourthorder, and is solved by the homotopy analysis method (HAM). This method is based on the Taylor series with an embedded parameter and is capable of providing very good approximations by means of only a few terms, if the initial guess and the auxiliary linear operator are properly selected. The analytical expressions are developed for the linear and nonlinear natural frequencies, which can be conveniently used to investigate the effects of the dimensionless length scale parameter, the material gradient index, and the vibration amplitude on the natural frequencies of FGMTs.
基金the National Natural Science Foundation of China (50479058, 10672032)
文摘Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the determination of material length-scale. Based on the couple stress elasto-plasticity, an analytical solution of thin cantilever beams is firstly presented, and the solution can be regarded as an extension of the elastic and rigid-plastic solutions of pure bending beam. A comparison with numerical results shows that the current analytical solution is reliable for the case of σ0 〈〈 H 〈〈 E, where σ0 is the initial yield strength, H is the hardening modulus and E is the elastic modulus. Fortunately, the above mentioned condition can be satisfied for many metal materials, and thus the solution can be used to determine the material length-scale of micro-structures in conjunction with the experiment of cantilever beams in the micro-scale.
文摘The purpose is to reestablish the balance laws of momentum, angular momentum and energy and to derive the corresponding local and nonlocal balance equations for micromorphic continuum mechanics and couple stress theory. The desired results for micromorphic continuum mechanics and couple stress theory are naturally obtained via direct transitions and reductions from the coupled conservation law of energy for micropolar continuum theory, respectively. The basic balance laws and equations for micromorphic continuum mechanics and couple stress theory are constituted by combining these results derived here and the traditional conservation laws and equations of mass and microinertia and the entropy inequality. The incomplete degrees of the former related continuum theories are clarified. Finally, some special cases are conveniently derived.
文摘The bending of the Euler-Bernoulli micro-beam has been extensively modeled based on the modified couple stress(MCS)theory.Although many models have been incorporated into the literature,there is still room for introducing an improved model in this context.In this work,we investigate the thermoelastic vibration of a micro-beam exposed to a varying temperature due to the application of the initial stress employing the MCS theory and generalized thermoelasticity.The MCS theory is used to investigate the material length scale effects.Using the Laplace transform,the temperature,deflection,displacement,flexure moment,and stress field variables of the micro-beam are derived.The effects of the temperature pulse and couple stress on the field distributions of the micro-beam are obtained numerically and graphically introduced.The numerical results indicate that the temperature pulse and couple stress have a significant effect on all field variables.
文摘A size-dependent computational approach for bending,free vibration and buckling analyses of isotropic and sandwich functionally graded(FG)microplates is in this study presented.We consider both shear deformation and small scale effects through the generalized higher order shear deformation theory and modified couple stress theory(MCST).The present model only retains a single material length scale parameter for capturing properly size effects.A rule of mixture is used to model material properties varying through the thickness of plates.The principle of virtual work is used to derive the discrete system equations which are approximated by moving Kriging interpolation(MKI)meshfree method.Numerical examples consider the inclusions of geometrical parameters,volume fraction,boundary conditions and material length scale parameter.Reliability and effectiveness of the present method are confirmed through numerical results.
文摘Investigation concerning peristaltic motion of couple stress fluid is made. An incompressible couple stress fluid occupies the porous medium. Mathematical anal- ysis is presented through large wavelength and low Reynolds number. Exact analytical expressions of axial velocity, volume flow rate, pressure gradient, and stream function are calculated as a function of couple stress parameter. The essential feature of the analysis is a full description of influence of couple stress parameter and permeability parameter on the pressure, frictional force, mechanical efficiency, and trapping.
文摘The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model introduces the length dependent effect based on the material constant and dynamic viscosity. Also, it introduces the biharmonic operator in the Navier-Stokes equations, which is absent in the case of Newtonian fluids. The solution to the time-dependent non-linear and coupled governing equations is carried out with an unconditionally stable Crank-Nicolson type of numerical schemes. Numerical results for the transient flow variables, the average wall shear stress, the Nusselt number, and the Sherwood number are shown graphically for both generative and destructive reactions. The time to reach the temporal maximum increases as the reaction constant K increases. The average values of the wall shear stress and the heat transfer rate decrease as K increases, while increase with the increase in the Sherwood number.
基金supported by the Iranian Nanotechnology Development Committee and the University of Kashan(No.363452/10)
文摘The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios, it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.
基金Project(2021YFF0306302)supported by the National Key R&D Program of ChinaProjects(42002277,41972279,42172299)supported by the National Natural Science Foundation of China+2 种基金Projects(2020M680321,2021T140046)supported by the China Postdoctoral Science FoundationProjects(2020-zz-081,2021-zz-116)supported by the Beijing Postdoctoral Research Foundation,ChinaProject(X21074)supported by the Fundamental Research Funds for Beijing University of Civil Engineering and Architecture,China。
文摘To obviate the complexities of the straight forward couple stress finite element method,the penalty-based couple stress finite element method(named PcouFEM)within the framework of the Cosserat continuum is utilized to obtain the approximate solution by relaxing the C1 continuity.To examine the performance of the PcouFEM,three well known numerical examples are investigated.For the analysis on stress concentration around the circular hole of the plane strain specimen,it was found that as long as the penalty factor G_(c) is not less than 5 times the shear modulus of the classical continuum G(i.e.,G_(c)≥5G),the stress concentration factors calculated by the PcouFEM with the reduced integration scheme agree well with the analytical solutions.For the strain localization analysis in the uniaxial compression test,it was observed that by applying the PcouFEM,the pathologically mesh-dependent problem associated with the conventional FEM can be alleviated or even removed,and based on numerical simulations,it is recommended to define 5G≤G_(c)≤10G from the perspective of numerical accuracy.For the soil slope subjected to an eccentric load through the rigid strip footing,it was found that the mesh-dependent problem of the shear band simulation can be largely alleviated by applying the PcouFEM.
基金supported by the National Natural Science Foundation of China (11172138, 10727201)
文摘This paper studies the static deformation behavior of a piezoelectric micromachined ultrasonic transducer (PMUT) actuated by a strong external electric field. The transducer membrane consists of a piezoelectric layer, a passive layer and two electrode layers. The nonlinearities of the piezoelectric layer caused by electrostriction under a strong electric field are analyzed. Because the thickness of the transducer membrane is on the microscale, the size dependence of the deformation behavior is evaluated using the couple stress theory. The results show that the optimal ratio of the top electrode diameter and the membrane diameter is around 0.674. It is also found that this optimal value does not depend on any other parameters if the thicknesses of the two electrodes are negligible compared with those of the piezo- electric and passive layers. In addition, the nonlinearities of the piezoelectric layer will become stronger along with the increase of the electric field, which means that softening of the membrane stiffness occurs when a strong external electric field is applied. Meanwhile, the optimal thickness ratio for the passive layer and the piezoelectric layer is not equal to 1.0 which is usually adopted by previous researchers. Because there exists size dependence of membrane deforma-tion, the optimal value of this thickness ratio needs to be greater than 1.0 on the microscale.
基金supported by the National Natural Science Foundation of China(Nos.51505089 and61204116)the Opening Project of the Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(Nos.ZHD201207 and 9140C030605140C03015)the Pearl River S&T Nova Program of Guangzhou(No.2014J2200086)
文摘An approximate analytical model for calculating the pull-in voltage of a stepped cantilever-type radio frequency (RF) micro electro-mechanical system (MEMS) switch is developed based on the Euler-Bernoulli beam and a modified couple stress theory, and is validated by comparison with the finite element results. The sensitivity functions of the pull-in voltage to the designed parameters are derived based on the proposed model. The sensitivity investigation shows that the pull-in voltage sensitivities increase/decrease nonlinearly with the increases in the designed parameters. For the stepped cantilever beam, there exists a nonzero optimal dimensionless length ratio, where the pull-in voltage is insensitive. The optimal value of the dimensionless length ratio only depends on the dimensionless width ratio, and can be obtained by solving a nonlinear equation. The determination of the designed parameters is discussed, and some recommendations are made for the RF MEMS switch optimization.
文摘The Hall and ion-slip effects on fully developed electrically conducting couple stress fluid flow between vertical parallel plates in the presence of a temperature dependent heat source are investigated. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using the homotopy analysis method (HAM). The effects of the magnetic parameter, Hall parameter, ion-slip parameter and couple stress fluid parameter on velocity and temperature are discussed and shown graphically