Inthis paper, each of the two phases in dense two-phase flow is considered as continuous medium and the fundamental equations for two-phase flow arc described in Eulerian form. The generalized constitutive relation of...Inthis paper, each of the two phases in dense two-phase flow is considered as continuous medium and the fundamental equations for two-phase flow arc described in Eulerian form. The generalized constitutive relation of the Bingham fluid is applied to the dispersed phase with the analysis oj physical mechanism of dense two-phase flow. The shearing stress of dispersed phase at a wall is used to give a boundary condition. Then a mathematical model for dense two-phase flow is obtained. In addition, the expressions of shearing stress of dispersed phase at a wall is derived according to the fundamental model of the friclional collision between dispersed-plutse particles and the wall.展开更多
Based on the theories of conventional electrodes, as well as the properties of microdisk electrode, the i-E equations for chronoamperometry at disk microelectrode for reversible, quasi-reversible and irreversible syst...Based on the theories of conventional electrodes, as well as the properties of microdisk electrode, the i-E equations for chronoamperometry at disk microelectrode for reversible, quasi-reversible and irreversible systems are derived. Steady-state voltammograms for the oxidation of [Fe(CN)6]4- , Fe2+ and ascorbic acid were measured at a series of microdisk electrodes with different radii. The conventional log-plot shows that oxidations of [Fe(CN)6]4- and ascorbic acid are reversible and totally irreversible, respectively, but the oxidation of Fe2+ is reversible at larger radius microdisk electrodes and quasi-reversible at smaller radius microdisk electrodes. The application of the log-plot to the voltammograms yielded a straight line, its slope allows us to evaluate the charge transfer coefficient and the intercept gives values of the electron transfer rate constant.展开更多
The theory of if-E curve in cyclic derivative chronopotentiometry is presented. Theoretical equations of if-E curves in the case of quasi-reversible and irreversible electrode reactions are deduced respectively.
Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Pain...Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Painlev'e expansion method by introducing an intermediate expansion method. Then the generalized (G′/G)-(G/G′) expansion method is naturally derived from the standpoint of the nonstandard truncated Painlev'e expansion. The application of the generalized method to the mKdV equation shows that it extends the range of exact solutions obtained by using the ( G′/ G)-expansion method.展开更多
A class of set-valued Leontief input-output equation is introduced and two solvability theorems are obtained, which provide some corresponding existence, surjection as well as continuity results.
This paper introduces analytical and numerical solutions of the nonlinear Langevin’s equation under square nonlinearity with stochastic non-homogeneity. The solution is obtained by using the Wiener-Hermite expansion ...This paper introduces analytical and numerical solutions of the nonlinear Langevin’s equation under square nonlinearity with stochastic non-homogeneity. The solution is obtained by using the Wiener-Hermite expansion with perturbation (WHEP) technique, and the results are compared with those of Picard iterations and the homotopy perturbation method (HPM). The WHEP technique is used to obtain up to fourth order approximation for different number of corrections. The mean and variance of the solution are obtained and compared among the different methods, and some parametric studies are done by using Matlab.展开更多
The fractional diffusion equations can accurately describe the migration process of anomalous diffusion, which are widely applied in the field of natural science and engineering calculations. This paper proposed a kin...The fractional diffusion equations can accurately describe the migration process of anomalous diffusion, which are widely applied in the field of natural science and engineering calculations. This paper proposed a kind of numerical methods with parallel nature which were the alternating segment explicit-implicit (ASE-I) and implicit-explicit (ASI-E) difference method for the time fractional sub-diffusion equation. It is based on the combination of the explicit scheme, implicit scheme, improved Saul’yev asymmetric scheme and the alternating segment technique. Theoretical analyses have shown that the solution of ASE-I (ASI-E) scheme is uniquely solvable. At the same time the stability and convergence of the two schemes were proved by the mathematical induction. The theoretical analyses are verified by numerical experiments. Meanwhile the ASE-I (ASI-E) scheme has the higher computational efficiency compared with the implicit scheme. Therefore it is feasible to use the parallel difference schemes for solving the time fractional diffusion equation.展开更多
The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first ...The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first order with respect to time.The derivation of the equations of continuum mechanics uses the limit transitions of the tendency of the volume increment and the time increment to zero.Derivatives are used to derive the wave equation.The differential wave equation is second order in time.Therefore,increments of volume and increments of time in continuum mechanics should be considered as small but finite quantities for problems of wave formation.This is important for calculating the generation of sound waves and water hammer waves.Therefore,the Euler continuity equation with finite time increments is of interest.The finiteness of the time increment makes it possible to take into account the quadratic and cubic invariants of the strain rate tensor.This is a new branch in hydrodynamics.Quadratic and cubic invariants will be used in differential wave equations of the second and third order in time.展开更多
文摘Inthis paper, each of the two phases in dense two-phase flow is considered as continuous medium and the fundamental equations for two-phase flow arc described in Eulerian form. The generalized constitutive relation of the Bingham fluid is applied to the dispersed phase with the analysis oj physical mechanism of dense two-phase flow. The shearing stress of dispersed phase at a wall is used to give a boundary condition. Then a mathematical model for dense two-phase flow is obtained. In addition, the expressions of shearing stress of dispersed phase at a wall is derived according to the fundamental model of the friclional collision between dispersed-plutse particles and the wall.
基金Supported by the National Natural Science Foundation of China Changchun Institute of Applied Chemistry of Chinese Academy of Sciences
文摘Based on the theories of conventional electrodes, as well as the properties of microdisk electrode, the i-E equations for chronoamperometry at disk microelectrode for reversible, quasi-reversible and irreversible systems are derived. Steady-state voltammograms for the oxidation of [Fe(CN)6]4- , Fe2+ and ascorbic acid were measured at a series of microdisk electrodes with different radii. The conventional log-plot shows that oxidations of [Fe(CN)6]4- and ascorbic acid are reversible and totally irreversible, respectively, but the oxidation of Fe2+ is reversible at larger radius microdisk electrodes and quasi-reversible at smaller radius microdisk electrodes. The application of the log-plot to the voltammograms yielded a straight line, its slope allows us to evaluate the charge transfer coefficient and the intercept gives values of the electron transfer rate constant.
基金Supported by the National Natural Science Foundation of China
文摘The theory of if-E curve in cyclic derivative chronopotentiometry is presented. Theoretical equations of if-E curves in the case of quasi-reversible and irreversible electrode reactions are deduced respectively.
基金Project supported by the National Key Basic Research Project of China (Grant No. 2004CB318000)the National Natural Science Foundation of China (Grant No. 10771072)
文摘Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Painlev'e expansion method by introducing an intermediate expansion method. Then the generalized (G′/G)-(G/G′) expansion method is naturally derived from the standpoint of the nonstandard truncated Painlev'e expansion. The application of the generalized method to the mKdV equation shows that it extends the range of exact solutions obtained by using the ( G′/ G)-expansion method.
文摘A class of set-valued Leontief input-output equation is introduced and two solvability theorems are obtained, which provide some corresponding existence, surjection as well as continuity results.
文摘This paper introduces analytical and numerical solutions of the nonlinear Langevin’s equation under square nonlinearity with stochastic non-homogeneity. The solution is obtained by using the Wiener-Hermite expansion with perturbation (WHEP) technique, and the results are compared with those of Picard iterations and the homotopy perturbation method (HPM). The WHEP technique is used to obtain up to fourth order approximation for different number of corrections. The mean and variance of the solution are obtained and compared among the different methods, and some parametric studies are done by using Matlab.
文摘The fractional diffusion equations can accurately describe the migration process of anomalous diffusion, which are widely applied in the field of natural science and engineering calculations. This paper proposed a kind of numerical methods with parallel nature which were the alternating segment explicit-implicit (ASE-I) and implicit-explicit (ASI-E) difference method for the time fractional sub-diffusion equation. It is based on the combination of the explicit scheme, implicit scheme, improved Saul’yev asymmetric scheme and the alternating segment technique. Theoretical analyses have shown that the solution of ASE-I (ASI-E) scheme is uniquely solvable. At the same time the stability and convergence of the two schemes were proved by the mathematical induction. The theoretical analyses are verified by numerical experiments. Meanwhile the ASE-I (ASI-E) scheme has the higher computational efficiency compared with the implicit scheme. Therefore it is feasible to use the parallel difference schemes for solving the time fractional diffusion equation.
文摘The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first order with respect to time.The derivation of the equations of continuum mechanics uses the limit transitions of the tendency of the volume increment and the time increment to zero.Derivatives are used to derive the wave equation.The differential wave equation is second order in time.Therefore,increments of volume and increments of time in continuum mechanics should be considered as small but finite quantities for problems of wave formation.This is important for calculating the generation of sound waves and water hammer waves.Therefore,the Euler continuity equation with finite time increments is of interest.The finiteness of the time increment makes it possible to take into account the quadratic and cubic invariants of the strain rate tensor.This is a new branch in hydrodynamics.Quadratic and cubic invariants will be used in differential wave equations of the second and third order in time.