In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infin...In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.展开更多
In this paper,we consider the energy conserving numerical scheme for coupled nonlinear Klein-Gordon equations.We propose energy conserving finite element method and get the unconditional superconvergence resultO(h^(2)...In this paper,we consider the energy conserving numerical scheme for coupled nonlinear Klein-Gordon equations.We propose energy conserving finite element method and get the unconditional superconvergence resultO(h^(2)+Dt^(2))by using the error splitting technique and postprocessing interpolation.Numerical experiments are carried out to support our theoretical results.展开更多
This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the ...This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the phenomenon of nonlinear waves propagating simultaneously in non-uniform optical fibers.By analyzing the Lax pair and the Riemann–Hilbert problem,we aim to provide a comprehensive understanding of the dynamics and interactions of solitons of this system.Furthermore,we study the impacts of group velocity dispersion or the fourth-order dispersion on soliton behaviors.Through appropriate parameter selections,we observe various nonlinear phenomena,including the disappearance of solitons after interaction and their transformation into breather-like solitons,as well as the propagation of breathers with variable periodicity and interactions between solitons with variable periodicities.展开更多
We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localiz...We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localized wave solution,the N-fold generalized Darboux transformation is given.Under the condition that the characteristic equation admits a double-root,we present the expression of the first-order interactional solution.Then we graphically analyze the dynamics of the breather and rogue wave.Due to the simultaneous existence of nonlinear and self-steepening terms in the equation,different profiles in two components for the breathers are presented.展开更多
We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota b...We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota bilinear method,and analyze the dynamical behaviors of these nondegenerate solitons.The results show that the shapes of the nondegenerate solitons are controllable by selecting different wave numbers,varying diffraction and nonlinearity parameters.In addition,when all the variable coefficients are chosen to be constant,the solutions obtained in this study reduce to the shape-preserving nondegenerate solitons.Finally,it is found that the nondegenerate two-soliton solutions can be bounded to form a double-hump two-soliton molecule after making the velocity of one double-hump soliton resonate with that of the other one.展开更多
Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the co...Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the coupled KdV and mKdV equations,which may depict the development of shallow water waves,the optical soliton propagation in cubic nonlinear media and the Alfven wave in a cold collision-free plasma.Secondly,the discrete generalized(r,N-r)-fold Darboux transformation is constructed and extended to solve this discrete coupled equation with the fourth-order linear spectral problem,from which diverse exact solutions including usual multi-soliton and semi-rational soliton solutions on the vanishing background,higher-order rational soliton and mixed hyperbolic-rational soliton solutions on the non-vanishing background are derived,and the limit states of some soliton and rational soliton solutions are analyzed by the asymptotic analysis technique.Finally,the numerical simulations are used to explore the dynamical behaviors of some exact soliton solutions.These results may be helpful for understanding some physical phenomena in fields of shallow water wave,optics,and plasma physics.展开更多
The extended F-expansion method or mapping method is used to construct exact solutions for the coupled KleinGordon Schr/Sdinger equations (K-G-S equations) by the aid of the symbolic computation system Mathematica. ...The extended F-expansion method or mapping method is used to construct exact solutions for the coupled KleinGordon Schr/Sdinger equations (K-G-S equations) by the aid of the symbolic computation system Mathematica. More solutions in the Jacobi elliptic function form are obtained, including the single Jacobi elliptic function solutions, combined Jacobi elliptic function solutions, rational solutions, triangular solutions, soliton solutions and combined soliton solutions.展开更多
By using the general solutions of a new coupled Riccati equations, a direct algebraic method is described to construct doubly periodic solutions (Jacobi elliptic function solution) for the coupled nonlinear Klein-Gord...By using the general solutions of a new coupled Riccati equations, a direct algebraic method is described to construct doubly periodic solutions (Jacobi elliptic function solution) for the coupled nonlinear Klein-Gordon equations.It is shown that more doubly periodic solutions and the corresponding solitary wave solutions and trigonometric function solutions can be obtained in a unified way by this method.展开更多
An innovative local artificial boundary condition is proposed to numerically solve the Cauchy problem of the Klein-Gordon equation in an unbounded domain.Initially,the equation is considered as the axial wave prop-aga...An innovative local artificial boundary condition is proposed to numerically solve the Cauchy problem of the Klein-Gordon equation in an unbounded domain.Initially,the equation is considered as the axial wave prop-agation in a bar supported on a spring foundation.The numerical model is then truncated by replacing the half-infinitely long bar with an equivalent mechanical structure.The effective frequency-dependent stiffness of the half-infinitely long bar is expressed as the sum of rational terms using Pade approximation.For each term,a corresponding substructure composed of dampers and masses is constructed.Finally,the equivalent mechan-ical structure is obtained by parallelly connecting these substructures.The proposed approach can be easily implemented within a standard finite element framework by incorporating additional mass points and damper elements.Numerical examples show that with just a few extra degrees of freedom,the proposed approach effec-tively suppresses artificial reflections at the truncation boundary and exhibits first-order convergence.展开更多
In this paper, a coupling of the natural transform method and the Admoian decomposition method called the natural transform decomposition method (NTDM), is utilized to solve the linear and nonlinear time-fractional Kl...In this paper, a coupling of the natural transform method and the Admoian decomposition method called the natural transform decomposition method (NTDM), is utilized to solve the linear and nonlinear time-fractional Klein-Gordan equation. The (NTDM), is introduced to derive the approximate solutions in series form for this equation. Solutions have been drawn for several values of the time power. To identify the strength of the method, three examples are presented.展开更多
In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equat...In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.展开更多
In this paper,the cyclic constitutive equations were proposed to describe the constitutive behavior of cyclic loading and unloading.Firstly,a coupled damage variable was derived,which contains two parts,i.e.,the compa...In this paper,the cyclic constitutive equations were proposed to describe the constitutive behavior of cyclic loading and unloading.Firstly,a coupled damage variable was derived,which contains two parts,i.e.,the compaction-induced damage and the cracking-induced damage.The compaction-induced damage variable was derived from a nonlinear stress–strain relation of the initial compaction stage,and the cracking-induced damage variable was established based on the statistical damage theory.Secondly,based on the total damage variable,a damage constitutive equation was proposed to describe the constitutive relation of rock under the monotonic uniaxial compression conditions,whereafter,the application of this model is extended to cyclic loading and unloading conditions.To validate the proposed monotonic and cyclic constitutive equations,a series of mechanical tests for marble specimens were carried out,which contained the monotonic uniaxial compression(MUC)experiment,cyclic uniaxial compression experiments under the variable amplitude(CUC-VA)and constant amplitude(CUC-CA)conditions.The results show that the proposed total damage variable comprehensively reflects the damage evolution characteristic,i.e.,the damage variable firstly decreases,then increases no matter under the conditions of MUC,CUC-VA or CUC-CA.Then a reasonable consistency is observed between the experimental and theoretical curves.The proposed cyclic constitutive equations can simulate the whole cyclic loading and unloading behaviors,such as the initial compaction,the strain hardening and the strain softening.Furthermore,the shapes of the theoretical curves are controlled by the modified coefficient,compaction sensitivity coefficient and two Weibull distributed parameters.展开更多
A quite general coupled variable coefficient modified KdV (VCmKdV) equation in a two-layer fluid systemis derived by means of the reductive perturbation method.Making use of the CK's direct method,some similarityr...A quite general coupled variable coefficient modified KdV (VCmKdV) equation in a two-layer fluid systemis derived by means of the reductive perturbation method.Making use of the CK's direct method,some similarityreductions of the coupled VCmKdV equation are obtained and their corresponding group explanations are discussed.Some exact solutions of the coupled equations are also presented.展开更多
The energy preserving average vector field (AVF) method is applied to the coupled Schr6dinger-KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction di...The energy preserving average vector field (AVF) method is applied to the coupled Schr6dinger-KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction discretization. In order to accelerate our simulation, the split-step technique is used. The numerical experiments show that the non-splitting scheme and splitting scheme are both effective, and have excellent long time numerical behavior. The comparisons show that the splitting scheme is faster than the non-splitting scheme, but it is not as good as the non-splitting scheme in preserving the invariants.展开更多
The coupled modified nonlinear Schrodinger equations are under investigation in this work. Starting from analyzing the spectral problem of the Lax pair, a Riemann-Hilbert problem for the coupled modified nonlinear Sch...The coupled modified nonlinear Schrodinger equations are under investigation in this work. Starting from analyzing the spectral problem of the Lax pair, a Riemann-Hilbert problem for the coupled modified nonlinear Schrodinger equations is formulated. And then, through solving the obtained Riemann-Hilbert problem under the conditions of irregularity and reflectionless case, N-soliton solutions for the equations are presented. Furthermore, the localized structures and dynamic behaviors of the one-soliton solution are shown graphically.展开更多
In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical e...In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical experiments are given to verify the efficiency and accuracy of our method. Moreover the numerical results show that the method can approximate sharp fronts accurately with minimal oscillation.展开更多
This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton)...This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations.展开更多
In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the ...In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the first-order modifications. Based on the asymptotical solutions, the effects of perturbations on soliton parameters and the collision between two solitons are then discussed in brief. Furthermore, we directly simulate the perturbed coupled nonlinear SchrSdinger equations by split-step Fourier method to check the validity of the direct perturbation method. It turns out that our analytical results are well supported by the numerical calculations.展开更多
The traditional differential quadrature method was improved by using theupwind difference scheme for the convective terms to solve the coupled two-dimensionalincompressible Navier-stokes equations and heat equation. T...The traditional differential quadrature method was improved by using theupwind difference scheme for the convective terms to solve the coupled two-dimensionalincompressible Navier-stokes equations and heat equation. The new method was compared with theconventional differential quadrature method in the aspects of convergence and accuracy. The resultsshow that the new method is more accurate, and has better convergence than the conventionaldifferential quadrature method for numerically computing the steady-state solution.展开更多
This paper mainly deals with the higher-order coupled Kirchhoff-type equations with nonlinear strong damped and source terms in a bounded domain. We obtain some results that are estimation of the upper bounds of Hausd...This paper mainly deals with the higher-order coupled Kirchhoff-type equations with nonlinear strong damped and source terms in a bounded domain. We obtain some results that are estimation of the upper bounds of Hausdorff dimension and Fractal dimension of the global attractor.展开更多
文摘In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.
基金The work is supported by the National Natural Science Foundation of China(No.11871441)Beijing Natural Science Foundation(No.1192003).
文摘In this paper,we consider the energy conserving numerical scheme for coupled nonlinear Klein-Gordon equations.We propose energy conserving finite element method and get the unconditional superconvergence resultO(h^(2)+Dt^(2))by using the error splitting technique and postprocessing interpolation.Numerical experiments are carried out to support our theoretical results.
基金supported by the Natural Science Foundation of Hebei Province,China (Grant No.A2021502004)the Fundamental Research Funds for the Central Universities (Grant No.2024MS126).
文摘This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the phenomenon of nonlinear waves propagating simultaneously in non-uniform optical fibers.By analyzing the Lax pair and the Riemann–Hilbert problem,we aim to provide a comprehensive understanding of the dynamics and interactions of solitons of this system.Furthermore,we study the impacts of group velocity dispersion or the fourth-order dispersion on soliton behaviors.Through appropriate parameter selections,we observe various nonlinear phenomena,including the disappearance of solitons after interaction and their transformation into breather-like solitons,as well as the propagation of breathers with variable periodicity and interactions between solitons with variable periodicities.
基金the National Natural Science Foundation of China(Grant Nos.11871232 and 12201578)Natural Science Foundation of Henan Province,China(Grant Nos.222300420377 and 212300410417)。
文摘We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localized wave solution,the N-fold generalized Darboux transformation is given.Under the condition that the characteristic equation admits a double-root,we present the expression of the first-order interactional solution.Then we graphically analyze the dynamics of the breather and rogue wave.Due to the simultaneous existence of nonlinear and self-steepening terms in the equation,different profiles in two components for the breathers are presented.
基金supported by the National Natural Science Foundation of China (Grant Nos.11975204 and 12075208)the Project of Zhoushan City Science and Technology Bureau (Grant No.2021C21015)the Training Program for Leading Talents in Universities of Zhejiang Province。
文摘We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota bilinear method,and analyze the dynamical behaviors of these nondegenerate solitons.The results show that the shapes of the nondegenerate solitons are controllable by selecting different wave numbers,varying diffraction and nonlinearity parameters.In addition,when all the variable coefficients are chosen to be constant,the solutions obtained in this study reduce to the shape-preserving nondegenerate solitons.Finally,it is found that the nondegenerate two-soliton solutions can be bounded to form a double-hump two-soliton molecule after making the velocity of one double-hump soliton resonate with that of the other one.
基金Project supported by the National Natural Science Foundation of China (Grant No.12071042)Beijing Natural Science Foundation (Grant No.1202006)。
文摘Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the coupled KdV and mKdV equations,which may depict the development of shallow water waves,the optical soliton propagation in cubic nonlinear media and the Alfven wave in a cold collision-free plasma.Secondly,the discrete generalized(r,N-r)-fold Darboux transformation is constructed and extended to solve this discrete coupled equation with the fourth-order linear spectral problem,from which diverse exact solutions including usual multi-soliton and semi-rational soliton solutions on the vanishing background,higher-order rational soliton and mixed hyperbolic-rational soliton solutions on the non-vanishing background are derived,and the limit states of some soliton and rational soliton solutions are analyzed by the asymptotic analysis technique.Finally,the numerical simulations are used to explore the dynamical behaviors of some exact soliton solutions.These results may be helpful for understanding some physical phenomena in fields of shallow water wave,optics,and plasma physics.
基金Project supported by the National Nature Science Foundation of China (Grant No 49894190) of the Chinese Academy of Science (Grant No KZCXI-sw-18), and Knowledge Innovation Program.
文摘The extended F-expansion method or mapping method is used to construct exact solutions for the coupled KleinGordon Schr/Sdinger equations (K-G-S equations) by the aid of the symbolic computation system Mathematica. More solutions in the Jacobi elliptic function form are obtained, including the single Jacobi elliptic function solutions, combined Jacobi elliptic function solutions, rational solutions, triangular solutions, soliton solutions and combined soliton solutions.
文摘By using the general solutions of a new coupled Riccati equations, a direct algebraic method is described to construct doubly periodic solutions (Jacobi elliptic function solution) for the coupled nonlinear Klein-Gordon equations.It is shown that more doubly periodic solutions and the corresponding solitary wave solutions and trigonometric function solutions can be obtained in a unified way by this method.
基金supported by the National Natural Science Foundation of China(Grant Nos.11832001 and 11702046).
文摘An innovative local artificial boundary condition is proposed to numerically solve the Cauchy problem of the Klein-Gordon equation in an unbounded domain.Initially,the equation is considered as the axial wave prop-agation in a bar supported on a spring foundation.The numerical model is then truncated by replacing the half-infinitely long bar with an equivalent mechanical structure.The effective frequency-dependent stiffness of the half-infinitely long bar is expressed as the sum of rational terms using Pade approximation.For each term,a corresponding substructure composed of dampers and masses is constructed.Finally,the equivalent mechan-ical structure is obtained by parallelly connecting these substructures.The proposed approach can be easily implemented within a standard finite element framework by incorporating additional mass points and damper elements.Numerical examples show that with just a few extra degrees of freedom,the proposed approach effec-tively suppresses artificial reflections at the truncation boundary and exhibits first-order convergence.
文摘In this paper, a coupling of the natural transform method and the Admoian decomposition method called the natural transform decomposition method (NTDM), is utilized to solve the linear and nonlinear time-fractional Klein-Gordan equation. The (NTDM), is introduced to derive the approximate solutions in series form for this equation. Solutions have been drawn for several values of the time power. To identify the strength of the method, three examples are presented.
文摘In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.
基金This study was financially supported by the National Natural Science Foundation of China(Nos.51978292,42077254 and 51874144).
文摘In this paper,the cyclic constitutive equations were proposed to describe the constitutive behavior of cyclic loading and unloading.Firstly,a coupled damage variable was derived,which contains two parts,i.e.,the compaction-induced damage and the cracking-induced damage.The compaction-induced damage variable was derived from a nonlinear stress–strain relation of the initial compaction stage,and the cracking-induced damage variable was established based on the statistical damage theory.Secondly,based on the total damage variable,a damage constitutive equation was proposed to describe the constitutive relation of rock under the monotonic uniaxial compression conditions,whereafter,the application of this model is extended to cyclic loading and unloading conditions.To validate the proposed monotonic and cyclic constitutive equations,a series of mechanical tests for marble specimens were carried out,which contained the monotonic uniaxial compression(MUC)experiment,cyclic uniaxial compression experiments under the variable amplitude(CUC-VA)and constant amplitude(CUC-CA)conditions.The results show that the proposed total damage variable comprehensively reflects the damage evolution characteristic,i.e.,the damage variable firstly decreases,then increases no matter under the conditions of MUC,CUC-VA or CUC-CA.Then a reasonable consistency is observed between the experimental and theoretical curves.The proposed cyclic constitutive equations can simulate the whole cyclic loading and unloading behaviors,such as the initial compaction,the strain hardening and the strain softening.Furthermore,the shapes of the theoretical curves are controlled by the modified coefficient,compaction sensitivity coefficient and two Weibull distributed parameters.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10547124,10475055,and 90503006the Youth Foundation of Shanghai Jiao Tong University
文摘A quite general coupled variable coefficient modified KdV (VCmKdV) equation in a two-layer fluid systemis derived by means of the reductive perturbation method.Making use of the CK's direct method,some similarityreductions of the coupled VCmKdV equation are obtained and their corresponding group explanations are discussed.Some exact solutions of the coupled equations are also presented.
基金supported by the National Natural Science Foundation of China(Grant No.91130013)the Open Foundation of State Key Laboratory of HighPerformance Computing of China
文摘The energy preserving average vector field (AVF) method is applied to the coupled Schr6dinger-KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction discretization. In order to accelerate our simulation, the split-step technique is used. The numerical experiments show that the non-splitting scheme and splitting scheme are both effective, and have excellent long time numerical behavior. The comparisons show that the splitting scheme is faster than the non-splitting scheme, but it is not as good as the non-splitting scheme in preserving the invariants.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61072147 and 11271008)
文摘The coupled modified nonlinear Schrodinger equations are under investigation in this work. Starting from analyzing the spectral problem of the Lax pair, a Riemann-Hilbert problem for the coupled modified nonlinear Schrodinger equations is formulated. And then, through solving the obtained Riemann-Hilbert problem under the conditions of irregularity and reflectionless case, N-soliton solutions for the equations are presented. Furthermore, the localized structures and dynamic behaviors of the one-soliton solution are shown graphically.
基金supported by the National Natural Science Foundation of China(Grant No.11171038)
文摘In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical experiments are given to verify the efficiency and accuracy of our method. Moreover the numerical results show that the method can approximate sharp fronts accurately with minimal oscillation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10871117 and 10571110)
文摘This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations.
基金Project supported by the National Natural Science Foundation of China (Grant No 10575087) and the Natural Science Foundation of Zheiiang Province of China (Grant No 102053). 0ne of the authors (Lin) would like to thank Prof. Sen-yue Lou for many useful discussions.
文摘In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the first-order modifications. Based on the asymptotical solutions, the effects of perturbations on soliton parameters and the collision between two solitons are then discussed in brief. Furthermore, we directly simulate the perturbed coupled nonlinear SchrSdinger equations by split-step Fourier method to check the validity of the direct perturbation method. It turns out that our analytical results are well supported by the numerical calculations.
文摘The traditional differential quadrature method was improved by using theupwind difference scheme for the convective terms to solve the coupled two-dimensionalincompressible Navier-stokes equations and heat equation. The new method was compared with theconventional differential quadrature method in the aspects of convergence and accuracy. The resultsshow that the new method is more accurate, and has better convergence than the conventionaldifferential quadrature method for numerically computing the steady-state solution.
文摘This paper mainly deals with the higher-order coupled Kirchhoff-type equations with nonlinear strong damped and source terms in a bounded domain. We obtain some results that are estimation of the upper bounds of Hausdorff dimension and Fractal dimension of the global attractor.