By means of the method of coupled lower and upper quasisolutio ns, the paper applies, instead of establishing the comparison theorem, a new ite rative technique to nonlinear impulsive Fredholm integral equations in ...By means of the method of coupled lower and upper quasisolutio ns, the paper applies, instead of establishing the comparison theorem, a new ite rative technique to nonlinear impulsive Fredholm integral equations in Banach sp aces and proves the existence theorem on their coupled extremal quasisolutions . Finally, an infinite system of nonlinear impulsive integral equations is provi ded to demonstrate the obtained results.展开更多
This paper is concerned with an Initial Boundary Value Problem (IBVP) for a strongly coupled semilinear reaction-diffusion system. By using the upper and lower solutions method and Leray-Schauder fixed point theorem a...This paper is concerned with an Initial Boundary Value Problem (IBVP) for a strongly coupled semilinear reaction-diffusion system. By using the upper and lower solutions method and Leray-Schauder fixed point theorem and so on, the authors prove the global existence and uniqueness of a. smooth. solution for this IBVP under some appropriate conditions.展开更多
We establish a new type of backward stochastic differential equations(BSDEs)connected with stochastic differential games(SDGs), namely, BSDEs strongly coupled with the lower and the upper value functions of SDGs, wher...We establish a new type of backward stochastic differential equations(BSDEs)connected with stochastic differential games(SDGs), namely, BSDEs strongly coupled with the lower and the upper value functions of SDGs, where the lower and the upper value functions are defined through this BSDE. The existence and the uniqueness theorem and comparison theorem are proved for such equations with the help of an iteration method. We also show that the lower and the upper value functions satisfy the dynamic programming principle. Moreover, we study the associated Hamilton-Jacobi-Bellman-Isaacs(HJB-Isaacs)equations, which are nonlocal, and strongly coupled with the lower and the upper value functions. Using a new method, we characterize the pair(W, U) consisting of the lower and the upper value functions as the unique viscosity solution of our nonlocal HJB-Isaacs equation. Furthermore, the game has a value under the Isaacs’ condition.展开更多
In this paper, we study a class of boundary value problems for conformable fractional differential equations under a new definition. Firstly, by using the monotone iterative technique and the method of coupled upper a...In this paper, we study a class of boundary value problems for conformable fractional differential equations under a new definition. Firstly, by using the monotone iterative technique and the method of coupled upper and lower solution, the sufficient condition for the existence of the boundary value problem is obtained, and the range of the solution is determined. Then the existence and uniqueness of the solution are proved by the proof by contradiction. Finally, a concrete example is given to illustrate the wide applicability of our main results.展开更多
We aim, in this work, to demonstrate the existence of minimal and maximal coupled quasi-solutions for nonlinear Caputo fractional differential systems with order q ∈ (1,2). Our approach is based on mixed monotone ite...We aim, in this work, to demonstrate the existence of minimal and maximal coupled quasi-solutions for nonlinear Caputo fractional differential systems with order q ∈ (1,2). Our approach is based on mixed monotone iterative techniques developed under the concept of lower and upper quasi-solutions. Our results extend those obtained for ordinary differential equations and fractional ones.展开更多
文摘By means of the method of coupled lower and upper quasisolutio ns, the paper applies, instead of establishing the comparison theorem, a new ite rative technique to nonlinear impulsive Fredholm integral equations in Banach sp aces and proves the existence theorem on their coupled extremal quasisolutions . Finally, an infinite system of nonlinear impulsive integral equations is provi ded to demonstrate the obtained results.
文摘This paper is concerned with an Initial Boundary Value Problem (IBVP) for a strongly coupled semilinear reaction-diffusion system. By using the upper and lower solutions method and Leray-Schauder fixed point theorem and so on, the authors prove the global existence and uniqueness of a. smooth. solution for this IBVP under some appropriate conditions.
基金supported by the NSF of China(11071144,11171187,11222110 and 71671104)Shandong Province(BS2011SF010,JQ201202)+4 种基金SRF for ROCS(SEM)Program for New Century Excellent Talents in University(NCET-12-0331)111 Project(B12023)the Ministry of Education of Humanities and Social Science Project(16YJA910003)Incubation Group Project of Financial Statistics and Risk Management of SDUFE
文摘We establish a new type of backward stochastic differential equations(BSDEs)connected with stochastic differential games(SDGs), namely, BSDEs strongly coupled with the lower and the upper value functions of SDGs, where the lower and the upper value functions are defined through this BSDE. The existence and the uniqueness theorem and comparison theorem are proved for such equations with the help of an iteration method. We also show that the lower and the upper value functions satisfy the dynamic programming principle. Moreover, we study the associated Hamilton-Jacobi-Bellman-Isaacs(HJB-Isaacs)equations, which are nonlocal, and strongly coupled with the lower and the upper value functions. Using a new method, we characterize the pair(W, U) consisting of the lower and the upper value functions as the unique viscosity solution of our nonlocal HJB-Isaacs equation. Furthermore, the game has a value under the Isaacs’ condition.
文摘In this paper, we study a class of boundary value problems for conformable fractional differential equations under a new definition. Firstly, by using the monotone iterative technique and the method of coupled upper and lower solution, the sufficient condition for the existence of the boundary value problem is obtained, and the range of the solution is determined. Then the existence and uniqueness of the solution are proved by the proof by contradiction. Finally, a concrete example is given to illustrate the wide applicability of our main results.
文摘We aim, in this work, to demonstrate the existence of minimal and maximal coupled quasi-solutions for nonlinear Caputo fractional differential systems with order q ∈ (1,2). Our approach is based on mixed monotone iterative techniques developed under the concept of lower and upper quasi-solutions. Our results extend those obtained for ordinary differential equations and fractional ones.