A bilinear Baecklund transformation is presented for the three coupled higher-order nonlinear Schroedinger equations with the inclusion of the group velocity dispersion, third-order dispersion and Kerr-law nonlinearit...A bilinear Baecklund transformation is presented for the three coupled higher-order nonlinear Schroedinger equations with the inclusion of the group velocity dispersion, third-order dispersion and Kerr-law nonlinearity, which can describe the dynamics of alpha helical proteins in living systems as well as the propagation of ultrashort pulses in wavelength-division multiplexed system. Starting from the Baecklund transformation, the analytical soliton solution is obtained from a trivial solution. Simultaneously, the N-soliton-like solution in double Wronskian form is constructed, and the corresponding proof is also given via the Wronskian technique. The results obtained from this paper might be valuable in studying the transfer of energy in biophysics and the transmission of light pulses in optical communication systems.展开更多
基金the Key Project of the Ministry of Education under Grant No.106033the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060006024National Natural Science Foundation of China under Grant No.60372095
文摘A bilinear Baecklund transformation is presented for the three coupled higher-order nonlinear Schroedinger equations with the inclusion of the group velocity dispersion, third-order dispersion and Kerr-law nonlinearity, which can describe the dynamics of alpha helical proteins in living systems as well as the propagation of ultrashort pulses in wavelength-division multiplexed system. Starting from the Baecklund transformation, the analytical soliton solution is obtained from a trivial solution. Simultaneously, the N-soliton-like solution in double Wronskian form is constructed, and the corresponding proof is also given via the Wronskian technique. The results obtained from this paper might be valuable in studying the transfer of energy in biophysics and the transmission of light pulses in optical communication systems.