期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Attributes-based person re-identification via CNNs with coupled clusters loss 被引量:1
1
作者 SUN Rui HUANG Qiheng +1 位作者 FANGWei ZHANG Xudong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期45-55,共11页
Person re-identification(re-id)involves matching a person across nonoverlapping views,with different poses,illuminations and conditions.Visual attributes are understandable semantic information to help improve the iss... Person re-identification(re-id)involves matching a person across nonoverlapping views,with different poses,illuminations and conditions.Visual attributes are understandable semantic information to help improve the issues including illumination changes,viewpoint variations and occlusions.This paper proposes an end-to-end framework of deep learning for attribute-based person re-id.In the feature representation stage of framework,the improved convolutional neural network(CNN)model is designed to leverage the information contained in automatically detected attributes and learned low-dimensional CNN features.Moreover,an attribute classifier is trained on separate data and includes its responses into the training process of our person re-id model.The coupled clusters loss function is used in the training stage of the framework,which enhances the discriminability of both types of features.The combined features are mapped into the Euclidean space.The L2 distance can be used to calculate the distance between any two pedestrians to determine whether they are the same.Extensive experiments validate the superiority and advantages of our proposed framework over state-of-the-art competitors on contemporary challenging person re-id datasets. 展开更多
关键词 person re-identification(re-id) convolutions neural network(CNN) attributes coupled clusters loss(ccl)
下载PDF
基于特征聚类对群三元组损失的车辆再识别 被引量:1
2
作者 吴燕雄 蔡建羡 滕云田 《电子学报》 EI CAS CSCD 北大核心 2020年第12期2444-2452,共9页
车辆再识别旨在从多个摄像机拍摄的图像中识别出同一车辆.本文提出了一种对群三元组损失函数,以特征中心点替代均值,并将对群思想和三元组损失相结合,优化了困难样本的识别.车辆再识别过程中,对群损失函数的训练过程扩大了样本规模,增... 车辆再识别旨在从多个摄像机拍摄的图像中识别出同一车辆.本文提出了一种对群三元组损失函数,以特征中心点替代均值,并将对群思想和三元组损失相结合,优化了困难样本的识别.车辆再识别过程中,对群损失函数的训练过程扩大了样本规模,增加了计算量,且传统对群损失函数无法准确处理困难正样本.为此,提出了一种特征聚类对群三元组损失函数.本方法采用正样本特征聚类中心并改进了三元组损失函数的设计,从而优化了对群损失函数.在不扩增输入样本数量的同时提升了算法处理困难样本的能力.实验表明,与主流车辆再识别算法相比,本方法可有效提升车辆再识别的准确率. 展开更多
关键词 车辆再识别 视觉特征 特征聚类对群损失 三元组损失
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部