To perform an integral simulation of a pool-type reactor using CFD code,a multi-physics coupled code MPC-LBE for an LBE-cooled reactor was proposed by integrating a point kinetics model and a fuel pin heat transfer mo...To perform an integral simulation of a pool-type reactor using CFD code,a multi-physics coupled code MPC-LBE for an LBE-cooled reactor was proposed by integrating a point kinetics model and a fuel pin heat transfer model into self-developed CFD code.For code verification,a code-to-code comparison was employed to validate the CFD code.Furthermore,a typical BT transient benchmark on the LBE-cooled XADS reactor was selected for verification in terms of the integral or system performance.Based on the verification results,it was demonstrated that the MPC-LBE coupled code can perform thermal-hydraulics or safety analyses for analysis for processes involved in LBE-cooled pool-type reactors.展开更多
A rate-compatible spatially coupled repeat-accumulate (RC-SC-RA) code is proposed. Its protograph is obtained by extending a given (J, K, L) SC-RA coupled chain (denoted as the mother chain) with extra check nodes and...A rate-compatible spatially coupled repeat-accumulate (RC-SC-RA) code is proposed. Its protograph is obtained by extending a given (J, K, L) SC-RA coupled chain (denoted as the mother chain) with extra check nodes and parity bit nodes T times. At each time, the extension is realized via coupling the message bits in the same way as that in the mother chain. Rate-compatibility is achieved by adjusting the extension parameters and applying random puncturing technique. Density evolution analysis shows that the iterative decoding thresholds of all the member codes in the proposed RC-SC-RA code family are very close to Shannon limits over the binary erasure channel. Finite length simulation results are consistent with the thresholds well. Moreover, the proposed RC-SC-RA codes perform better than spatially coupled low density parity check (SC-LDPC) codes in decoding performance especially in lower-rate region.展开更多
Investigating the time-dependent behavior of nuclear reactors during loss of flow accidents is necessary for safety assessment.Coupled neutronic/thermal-hydraulic codes are used to simulate a full three-dimensional mo...Investigating the time-dependent behavior of nuclear reactors during loss of flow accidents is necessary for safety assessment.Coupled neutronic/thermal-hydraulic codes are used to simulate a full three-dimensional model and predict the essential safety parameters.MCNP6/ANSYS-FLUENT17.2 coupled scheme is used in the present study to simulate a three-dimensional model for VVER-1000 assembly and analyze its behavior during a LOFA(loss of flow accident).Three LOFA scenarios are proposed to represent the failure of one,two or three of the coolant pumps.The influence of the accident on the reactivity and axial power distribution of the assembly is determined considering thermal-hydraulic feedbacks.Then the data obtained are provided to the thermal-hydraulic code to calculate the actual temperature values.The results of the study showed that the developed coupling scheme granted an actual and precise description of the axial behavior of the assembly during LOFA.The output data obtained from both neutronic and thermal-hydraulic calculations have a strong feedback effect;this demonstrated the effect of data exchange between codes to predict accurate values for the main safety parameters.Moreover,it revealed the importance of studying the detailed axial distribution of the safety parameters for the reactor assessment during accidents rather than taking average values in calculations.展开更多
In this paper, we conclude five kinds of methods for construction of the regular low-density parity matrix H and three kinds of methods for the construction of irregular low-density parity-check matrix H. Through the ...In this paper, we conclude five kinds of methods for construction of the regular low-density parity matrix H and three kinds of methods for the construction of irregular low-density parity-check matrix H. Through the analysis of the code rate and parameters of these eight kinds of structures, we find that the construction of low-density parity-check matrix tends to be more flexible and the parameter variability is enhanced. We propose that the current development cost should be lower with the progress of electronic technology and we need research on more practical Low-Density Parity-Check Codes (LDPC). Combined with the application of the quantum distribution key, we urgently need to explore the research direction of relevant theories and technologies of LDPC codes in other fields of quantum information in the future.展开更多
Based on a coupled nonlinear dynamic filter (NDF), a novel chaotic stream cipher is presented in this paper and employed to protect palmprint templates. The chaotic pseudorandom bit generator (PRBG) based on a cou...Based on a coupled nonlinear dynamic filter (NDF), a novel chaotic stream cipher is presented in this paper and employed to protect palmprint templates. The chaotic pseudorandom bit generator (PRBG) based on a coupled NDF, which is constructed in an inverse flow, can generate multiple bits at one iteration and satisfy the security requirement of cipher design. Then, the stream cipher is employed to generate cancelable competitive code palmprint biometrics for template protection. The proposed cancelable palmprint authentication system depends on two factors: the palmprint biometric and the password/token. Therefore, the system provides high-confidence and also protects the user's privacy. The experimental results of verification on the Hong Kong PolyU Palmprint Database show that the proposed approach has a large template re-issuance ability and the equal error rate can achieve 0.02%. The performance of the palmprint template protection scheme proves the good practicability and security of the proposed stream cipher.展开更多
The Lagrangian DDM (discrete droplet model) is state-of-the-art for CFD (computational fluid dynamics) simulations of mixture formation and combustion in industrial engines. A commonly known drawback of the DDM ap...The Lagrangian DDM (discrete droplet model) is state-of-the-art for CFD (computational fluid dynamics) simulations of mixture formation and combustion in industrial engines. A commonly known drawback of the DDM approach is the attenuated validity in the dense spray, where the bulk liquid disintegrates into droplets. There the assumption of single droplets surrounded by a homogenous gas field is not reasonable. In this region, the Eulerian-Eulerian multi-phase approach performs better because instead of parcels the spray is represented by the volume fractions of one bulk liquid and several droplet size class phases. A further drawback of the DDM approach is that increasing the spatial resolution of the computational grid leads to a reduced statistical convergence, since the number of spray parcels per computational cell becomes smaller. It is desirable to combine the benefits of both spray approaches in coupled CFD simulations. Therefore, the dense spray region is simulated separately with the Eulerian spray approach on a highly resolved mesh covering only the region close to the nozzle orifice. The entire engine domain with combustion and emission models is simulated with the Eulerian-Lagrangian spray approach for the dilute spray region. The two simulations are coupled through exchange of boundary conditions and model source terms. An on-line coupling interface manages the data transfer between the two simulation clients, i.e., Eulerian spray and engine client. The aim of this work is to extend the coupled spray approach in terms of exchanging combustion related heat and species sources, and consequently creating the link between Eulerian spray and combustion models. The results show mixture formation and combustion in real-case engine simulations, and demonstrate the feasibility of spray model combination in engineering applications.展开更多
The main objective of this paper is to investigate and analyse the thermo-hydro-mechanical(THM) coupling phenomena and their influences on the repository safety.In this paper,the high-level waste(HLW) disposal con...The main objective of this paper is to investigate and analyse the thermo-hydro-mechanical(THM) coupling phenomena and their influences on the repository safety.In this paper,the high-level waste(HLW) disposal concept in drifts in clay formation with backfilled bentonite buffer is represented numerically using the CODE BRIGHT developed by the Technical University of Catalonia in Barcelona.The parameters of clay and bentonite used in the simulation are determined by laboratory and in situ experiments.The calculation results are presented to show the hydro-mechanical(HM) processes during the operation phase and the THM processes in the after-closure phase.According to the simulation results,the most probable critical processes for the disposal project have been represented and analyzed.The work also provides an input for additional development regarding the design,assessment and validation of the HLW disposal concept.展开更多
This paper presents a new coding scheme called semi-low-density parity-check convolutional code(semi-LDPC-CC),whose parity-check matrix consists of both sparse and dense sub-matrices,a feature distinguished from the c...This paper presents a new coding scheme called semi-low-density parity-check convolutional code(semi-LDPC-CC),whose parity-check matrix consists of both sparse and dense sub-matrices,a feature distinguished from the conventional LDPC-CCs.We propose sliding-window list(SWL)decoding algorithms with a fixed window size of two,resulting in a low decoding latency but a competitive error-correcting performance.The performance can be predicted by upper bounds derived from the first event error probability and by genie-aided(GA)lower bounds estimated from the underlying LDPC block codes(LDPC-BCs),while the complexity can be reduced by truncating the list with a threshold on the difference between the soft metrics in the serial decoding implementation.Numerical results are presented to validate our analysis and demonstrate the performance advantage of the semi-LDPC-CCs over the conventional LDPC-CCs.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12005025,41774190).
文摘To perform an integral simulation of a pool-type reactor using CFD code,a multi-physics coupled code MPC-LBE for an LBE-cooled reactor was proposed by integrating a point kinetics model and a fuel pin heat transfer model into self-developed CFD code.For code verification,a code-to-code comparison was employed to validate the CFD code.Furthermore,a typical BT transient benchmark on the LBE-cooled XADS reactor was selected for verification in terms of the integral or system performance.Based on the verification results,it was demonstrated that the MPC-LBE coupled code can perform thermal-hydraulics or safety analyses for analysis for processes involved in LBE-cooled pool-type reactors.
基金Supported by the National Natural Science Foundation of China(No.61801371,61801372,61701291,61771417)Natural Science Basic Research Plan in Shaanxi Province of China(No.2018JM5052)+1 种基金National Key Research and Development Program of China(No.2018YFC0808301)Talent Foundation of Xi’an University of Science and Technology(No.2018QDJ028)
文摘A rate-compatible spatially coupled repeat-accumulate (RC-SC-RA) code is proposed. Its protograph is obtained by extending a given (J, K, L) SC-RA coupled chain (denoted as the mother chain) with extra check nodes and parity bit nodes T times. At each time, the extension is realized via coupling the message bits in the same way as that in the mother chain. Rate-compatibility is achieved by adjusting the extension parameters and applying random puncturing technique. Density evolution analysis shows that the iterative decoding thresholds of all the member codes in the proposed RC-SC-RA code family are very close to Shannon limits over the binary erasure channel. Finite length simulation results are consistent with the thresholds well. Moreover, the proposed RC-SC-RA codes perform better than spatially coupled low density parity check (SC-LDPC) codes in decoding performance especially in lower-rate region.
文摘Investigating the time-dependent behavior of nuclear reactors during loss of flow accidents is necessary for safety assessment.Coupled neutronic/thermal-hydraulic codes are used to simulate a full three-dimensional model and predict the essential safety parameters.MCNP6/ANSYS-FLUENT17.2 coupled scheme is used in the present study to simulate a three-dimensional model for VVER-1000 assembly and analyze its behavior during a LOFA(loss of flow accident).Three LOFA scenarios are proposed to represent the failure of one,two or three of the coolant pumps.The influence of the accident on the reactivity and axial power distribution of the assembly is determined considering thermal-hydraulic feedbacks.Then the data obtained are provided to the thermal-hydraulic code to calculate the actual temperature values.The results of the study showed that the developed coupling scheme granted an actual and precise description of the axial behavior of the assembly during LOFA.The output data obtained from both neutronic and thermal-hydraulic calculations have a strong feedback effect;this demonstrated the effect of data exchange between codes to predict accurate values for the main safety parameters.Moreover,it revealed the importance of studying the detailed axial distribution of the safety parameters for the reactor assessment during accidents rather than taking average values in calculations.
文摘In this paper, we conclude five kinds of methods for construction of the regular low-density parity matrix H and three kinds of methods for the construction of irregular low-density parity-check matrix H. Through the analysis of the code rate and parameters of these eight kinds of structures, we find that the construction of low-density parity-check matrix tends to be more flexible and the parameter variability is enhanced. We propose that the current development cost should be lower with the progress of electronic technology and we need research on more practical Low-Density Parity-Check Codes (LDPC). Combined with the application of the quantum distribution key, we urgently need to explore the research direction of relevant theories and technologies of LDPC codes in other fields of quantum information in the future.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971104)the Basic Research Foundation of Sichuan Province,China (Grant No. 2006J013-011)+1 种基金the Outstanding Young Researchers Foundation of Sichuan Province,China (Grant No. 09ZQ026-091)the Research Fund for the Doctoral Program of Higher Education of China(Grant No. 20090184110008)
文摘Based on a coupled nonlinear dynamic filter (NDF), a novel chaotic stream cipher is presented in this paper and employed to protect palmprint templates. The chaotic pseudorandom bit generator (PRBG) based on a coupled NDF, which is constructed in an inverse flow, can generate multiple bits at one iteration and satisfy the security requirement of cipher design. Then, the stream cipher is employed to generate cancelable competitive code palmprint biometrics for template protection. The proposed cancelable palmprint authentication system depends on two factors: the palmprint biometric and the password/token. Therefore, the system provides high-confidence and also protects the user's privacy. The experimental results of verification on the Hong Kong PolyU Palmprint Database show that the proposed approach has a large template re-issuance ability and the equal error rate can achieve 0.02%. The performance of the palmprint template protection scheme proves the good practicability and security of the proposed stream cipher.
文摘The Lagrangian DDM (discrete droplet model) is state-of-the-art for CFD (computational fluid dynamics) simulations of mixture formation and combustion in industrial engines. A commonly known drawback of the DDM approach is the attenuated validity in the dense spray, where the bulk liquid disintegrates into droplets. There the assumption of single droplets surrounded by a homogenous gas field is not reasonable. In this region, the Eulerian-Eulerian multi-phase approach performs better because instead of parcels the spray is represented by the volume fractions of one bulk liquid and several droplet size class phases. A further drawback of the DDM approach is that increasing the spatial resolution of the computational grid leads to a reduced statistical convergence, since the number of spray parcels per computational cell becomes smaller. It is desirable to combine the benefits of both spray approaches in coupled CFD simulations. Therefore, the dense spray region is simulated separately with the Eulerian spray approach on a highly resolved mesh covering only the region close to the nozzle orifice. The entire engine domain with combustion and emission models is simulated with the Eulerian-Lagrangian spray approach for the dilute spray region. The two simulations are coupled through exchange of boundary conditions and model source terms. An on-line coupling interface manages the data transfer between the two simulation clients, i.e., Eulerian spray and engine client. The aim of this work is to extend the coupled spray approach in terms of exchanging combustion related heat and species sources, and consequently creating the link between Eulerian spray and combustion models. The results show mixture formation and combustion in real-case engine simulations, and demonstrate the feasibility of spray model combination in engineering applications.
基金financed and supported by the German research institute "Gesellschaft für Anlagen-und Reaktorsicherheit (GRS) mbH"
文摘The main objective of this paper is to investigate and analyse the thermo-hydro-mechanical(THM) coupling phenomena and their influences on the repository safety.In this paper,the high-level waste(HLW) disposal concept in drifts in clay formation with backfilled bentonite buffer is represented numerically using the CODE BRIGHT developed by the Technical University of Catalonia in Barcelona.The parameters of clay and bentonite used in the simulation are determined by laboratory and in situ experiments.The calculation results are presented to show the hydro-mechanical(HM) processes during the operation phase and the THM processes in the after-closure phase.According to the simulation results,the most probable critical processes for the disposal project have been represented and analyzed.The work also provides an input for additional development regarding the design,assessment and validation of the HLW disposal concept.
基金This work was supported by the National Key R&D Program of China under Grant 2020YFB1807100the NSF of China under Grant 61971454 and Grant 62071498 and Guangdong Basic and Applied Basic Research Foundation under Grant 2020A1515010687.
文摘This paper presents a new coding scheme called semi-low-density parity-check convolutional code(semi-LDPC-CC),whose parity-check matrix consists of both sparse and dense sub-matrices,a feature distinguished from the conventional LDPC-CCs.We propose sliding-window list(SWL)decoding algorithms with a fixed window size of two,resulting in a low decoding latency but a competitive error-correcting performance.The performance can be predicted by upper bounds derived from the first event error probability and by genie-aided(GA)lower bounds estimated from the underlying LDPC block codes(LDPC-BCs),while the complexity can be reduced by truncating the list with a threshold on the difference between the soft metrics in the serial decoding implementation.Numerical results are presented to validate our analysis and demonstrate the performance advantage of the semi-LDPC-CCs over the conventional LDPC-CCs.