This new work aims to develop a full coupled thermomechanical method including both the temperature profile and displacements as primary unknowns of the model.This generic full coupled 3D exact shell model permits the...This new work aims to develop a full coupled thermomechanical method including both the temperature profile and displacements as primary unknowns of the model.This generic full coupled 3D exact shell model permits the thermal stress investigation of laminated isotropic,composite and sandwich structures.Cylindrical and spherical panels,cylinders and plates are analyzed in orthogonal mixed curved reference coordinates.The 3D equilibrium relations and the 3D Fourier heat conduction equation for spherical shells are coupled and they trivially can be simplified in those for plates and cylindrical panels.The exponential matrix methodology is used to find the solutions of a full coupled model based on coupled differential relations with respect to the thickness coordinate.The analytical solution is based on theories of simply supported edges and harmonic relations for displacement components and sovra-temperature.The sovra-temperature magnitudes are directly applied at the outer faces through static state hypotheses.As a consequence,the sovra-temperature description is assumed to be an unknown variable of themodel and it is calculated in the sameway as the three displacements.The final systemis based on a set of coupled homogeneous differential relations of second order in the thickness coordinate.This system is reduced in a first order differential relation system by redoubling the number of unknowns.Therefore,the exponential matrix methodology is applied to calculate the solution.The temperature field effects are evaluated in the static investigation of shells and plates in terms of displacement and stress components.After an appropriate preliminary validation,new benchmarks are discussed for several thickness ratios,geometrical data,lamination sequences,materials and sovra-temperature values imposed at the outer faces.Results make evident the accordance between the uncoupled thermo-mechanical model and this new full coupled thermo-mechanical model without the need to separately solve the Fourier heat conduction relation.Both effects connected with the thickness layer and the related embedded materials are included in the conducted thermal stress analysis.展开更多
The problem of axisymmetric nonlinear vibration for shallow thin spherical and conical shells when temperature and strain fields are coupled is studied. Based on the large deflection theories of von Krmn and the theor...The problem of axisymmetric nonlinear vibration for shallow thin spherical and conical shells when temperature and strain fields are coupled is studied. Based on the large deflection theories of von Krmn and the theory of thermoelasticity, the whole governing equations and their simplified type are derived. The time-spatial variables are separated by Galerkin's technique, thus reducing the governing equations to a system of time-dependent nonlinear ordinary differential equation. By means of regular perturbation method and multiple-scales method, the first-order approximate analytical solution for characteristic relation of frequency vs amplitude parameters along with the decay rate of amplitude are obtained, and the effects of different geometric parameters and coupling factors as well as boundary conditions on thermoelastically coupled nonlinear vibration behaviors are discussed.展开更多
Based on the generalized vaxiational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo- elasticity of ferromagnetic thin shell--I...Based on the generalized vaxiational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo- elasticity of ferromagnetic thin shell--I), the present paper developed a finite element modeling for the mechanical-magneto-thermal multi-field coupling of a ferromagnetic thin shell. The numerical modeling composes of finite element equations for three sub-systems of magnetic, thermal and deformation fields, as well as iterative methods for nonlinearities of the geometrical large-deflection and the multi-field coupling of the ferromagnetic shell. As examples, the numerical simulations on magneto-elastic behaviors of a ferromagnetic cylindrical shell in an applied magnetic field, and magneto-thermo-elastic behaviors of the shell in applied magnetic and thermal fields are carried out. The results are in good agreement with the experimental ones.展开更多
The governing equation and energy equations for thermal-elastic coupling vibration of cylindrical shell were developed. The Garlerkin method was used in numerical process. Some useful result can be concluded from nume...The governing equation and energy equations for thermal-elastic coupling vibration of cylindrical shell were developed. The Garlerkin method was used in numerical process. Some useful result can be concluded from numerical result. With the increase of the amplitude of temperature and coupling coefficient, the speed of vibration decaying becomes slower and the coupling effect becomes weaker. The larger the ration of length to radius and length to thickness, the faster the decaying of the vibration amplitude and the vibration frequency increase. It means the coupling effect gets stronger. The larger the coupling coefficient, the smaller the axial stress, the axial force and the bendind moment are.展开更多
Based on the generalized variational principle of magneto-thermo-elasticity of the ferromagnetic elastic medium, a nonlinear coupling theoretical modeling for a ferromagnetic thin shell is developed. All governing equ...Based on the generalized variational principle of magneto-thermo-elasticity of the ferromagnetic elastic medium, a nonlinear coupling theoretical modeling for a ferromagnetic thin shell is developed. All governing equations and boundary conditions for the ferromagnetic shell are obtained from the variational manipulations on the magnetic scalar potential, temperature and the elastic displacement related to the total energy functional. The multi-field couplings and geometrical nonlinearity of the ferromagnetic thin shell are taken into account in the modeling. The general modeling can be further deduced to existing models of the magneto-elasticity and the thermo-elasticity of a ferromagnetic shell and magneto-thermo-elasticity of a ferromagnetic plate, which are coincident with the ones in literature.展开更多
The spatial reticulated shell structure with cables (RSC) is a kind of coupling working system, which consists of flexible cables, reticulated shell structure (RS) and tower columns. The dynamic analysis of RSC based ...The spatial reticulated shell structure with cables (RSC) is a kind of coupling working system, which consists of flexible cables, reticulated shell structure (RS) and tower columns. The dynamic analysis of RSC based on the coupling model was carried out. Three kinds of elements such as the spatial bar element, cable element and beam element were introduced to analyze the reticulated shell, cable and tower column respectively. Furthermore, such parameter influences as structural boundary conditions, grid configuration, the span-to-depth ratio and the arrangement of cable system upon structural dynamics were analyzed. The structural vibration modes can be divided into four groups based on some numerical examples. And the frequencies in the same group are very close while the frequencies in different groups are different from each other obviously. It is clear that the sequence of the appearance of the each mode group heavily depends on the comparative stiffness of the tower column system, RS and cables.展开更多
This paper studies electromagnetoelastic static investigation of a sandwich doubly curved microshell subjected to multi-field loading based on a new thickness stretching included refined higher order shear/normal defo...This paper studies electromagnetoelastic static investigation of a sandwich doubly curved microshell subjected to multi-field loading based on a new thickness stretching included refined higher order shear/normal deformable model.Modified-couple-stress-theory(MCST)is used for accounting small-scaledependency.The numerical results are derived using an analytical method.The effect of small scale parameter in micro scale,initial electric and magnetic potentials and foundation parameters is studied on the electromagnetoelastic bending results.It is confirmed an enhancing in stiffness of small scale shell with an increase in micro length scale parameter.展开更多
The research on structural vibration and sound radiation of underwater ring-ribbed cylindrical shell, which is coated with a kind of deadening and decoupling materials, becomes a focus in recent years. This paper anal...The research on structural vibration and sound radiation of underwater ring-ribbed cylindrical shell, which is coated with a kind of deadening and decoupling materials, becomes a focus in recent years. This paper analyzes the problem on two aspects: model experiment and numerical calculation. The model experiment is carried out including three cases firstly, in which the structural vibration response and radiating acoustic field are measured respectively, and the results gained in these three cases are analyzed to discuss the effect of reducing structural vibration and radiating noise of the deadening and decoupling materials. The coupling FEM/BEM and the SEA methods are both used in numerical calculation, i.e. the arithmetic of the coupling FEM/BEM method is adopted to calculate the low frequency characteristics and the SEA method is adopted to calculate the medium-high frequencies characteristics of the model. By comparing experimental results with numerical calculation results, it is proved that the algorithm adopted in this paper is reasonable.展开更多
文摘This new work aims to develop a full coupled thermomechanical method including both the temperature profile and displacements as primary unknowns of the model.This generic full coupled 3D exact shell model permits the thermal stress investigation of laminated isotropic,composite and sandwich structures.Cylindrical and spherical panels,cylinders and plates are analyzed in orthogonal mixed curved reference coordinates.The 3D equilibrium relations and the 3D Fourier heat conduction equation for spherical shells are coupled and they trivially can be simplified in those for plates and cylindrical panels.The exponential matrix methodology is used to find the solutions of a full coupled model based on coupled differential relations with respect to the thickness coordinate.The analytical solution is based on theories of simply supported edges and harmonic relations for displacement components and sovra-temperature.The sovra-temperature magnitudes are directly applied at the outer faces through static state hypotheses.As a consequence,the sovra-temperature description is assumed to be an unknown variable of themodel and it is calculated in the sameway as the three displacements.The final systemis based on a set of coupled homogeneous differential relations of second order in the thickness coordinate.This system is reduced in a first order differential relation system by redoubling the number of unknowns.Therefore,the exponential matrix methodology is applied to calculate the solution.The temperature field effects are evaluated in the static investigation of shells and plates in terms of displacement and stress components.After an appropriate preliminary validation,new benchmarks are discussed for several thickness ratios,geometrical data,lamination sequences,materials and sovra-temperature values imposed at the outer faces.Results make evident the accordance between the uncoupled thermo-mechanical model and this new full coupled thermo-mechanical model without the need to separately solve the Fourier heat conduction relation.Both effects connected with the thickness layer and the related embedded materials are included in the conducted thermal stress analysis.
文摘The problem of axisymmetric nonlinear vibration for shallow thin spherical and conical shells when temperature and strain fields are coupled is studied. Based on the large deflection theories of von Krmn and the theory of thermoelasticity, the whole governing equations and their simplified type are derived. The time-spatial variables are separated by Galerkin's technique, thus reducing the governing equations to a system of time-dependent nonlinear ordinary differential equation. By means of regular perturbation method and multiple-scales method, the first-order approximate analytical solution for characteristic relation of frequency vs amplitude parameters along with the decay rate of amplitude are obtained, and the effects of different geometric parameters and coupling factors as well as boundary conditions on thermoelastically coupled nonlinear vibration behaviors are discussed.
基金supported by he National Natural Science Foundation of China (No.10872081)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (No.111005)
文摘Based on the generalized vaxiational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo- elasticity of ferromagnetic thin shell--I), the present paper developed a finite element modeling for the mechanical-magneto-thermal multi-field coupling of a ferromagnetic thin shell. The numerical modeling composes of finite element equations for three sub-systems of magnetic, thermal and deformation fields, as well as iterative methods for nonlinearities of the geometrical large-deflection and the multi-field coupling of the ferromagnetic shell. As examples, the numerical simulations on magneto-elastic behaviors of a ferromagnetic cylindrical shell in an applied magnetic field, and magneto-thermo-elastic behaviors of the shell in applied magnetic and thermal fields are carried out. The results are in good agreement with the experimental ones.
文摘The governing equation and energy equations for thermal-elastic coupling vibration of cylindrical shell were developed. The Garlerkin method was used in numerical process. Some useful result can be concluded from numerical result. With the increase of the amplitude of temperature and coupling coefficient, the speed of vibration decaying becomes slower and the coupling effect becomes weaker. The larger the ration of length to radius and length to thickness, the faster the decaying of the vibration amplitude and the vibration frequency increase. It means the coupling effect gets stronger. The larger the coupling coefficient, the smaller the axial stress, the axial force and the bendind moment are.
基金supported by the National Natural Science Foundation of China (No.10872081)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (No. 111005)
文摘Based on the generalized variational principle of magneto-thermo-elasticity of the ferromagnetic elastic medium, a nonlinear coupling theoretical modeling for a ferromagnetic thin shell is developed. All governing equations and boundary conditions for the ferromagnetic shell are obtained from the variational manipulations on the magnetic scalar potential, temperature and the elastic displacement related to the total energy functional. The multi-field couplings and geometrical nonlinearity of the ferromagnetic thin shell are taken into account in the modeling. The general modeling can be further deduced to existing models of the magneto-elasticity and the thermo-elasticity of a ferromagnetic shell and magneto-thermo-elasticity of a ferromagnetic plate, which are coincident with the ones in literature.
基金NationalNaturalScience Foundation ofChina (No. 5 0 2 780 5 4) and the KeyProject of Chinese Ministry of Education(No.10 40 79)
文摘The spatial reticulated shell structure with cables (RSC) is a kind of coupling working system, which consists of flexible cables, reticulated shell structure (RS) and tower columns. The dynamic analysis of RSC based on the coupling model was carried out. Three kinds of elements such as the spatial bar element, cable element and beam element were introduced to analyze the reticulated shell, cable and tower column respectively. Furthermore, such parameter influences as structural boundary conditions, grid configuration, the span-to-depth ratio and the arrangement of cable system upon structural dynamics were analyzed. The structural vibration modes can be divided into four groups based on some numerical examples. And the frequencies in the same group are very close while the frequencies in different groups are different from each other obviously. It is clear that the sequence of the appearance of the each mode group heavily depends on the comparative stiffness of the tower column system, RS and cables.
基金the Programs for Science and Technology Development of Henan province(No.202102210020)Basic research plan of key scientific research projects of Henan universities(No.20B430011).
文摘This paper studies electromagnetoelastic static investigation of a sandwich doubly curved microshell subjected to multi-field loading based on a new thickness stretching included refined higher order shear/normal deformable model.Modified-couple-stress-theory(MCST)is used for accounting small-scaledependency.The numerical results are derived using an analytical method.The effect of small scale parameter in micro scale,initial electric and magnetic potentials and foundation parameters is studied on the electromagnetoelastic bending results.It is confirmed an enhancing in stiffness of small scale shell with an increase in micro length scale parameter.
文摘The research on structural vibration and sound radiation of underwater ring-ribbed cylindrical shell, which is coated with a kind of deadening and decoupling materials, becomes a focus in recent years. This paper analyzes the problem on two aspects: model experiment and numerical calculation. The model experiment is carried out including three cases firstly, in which the structural vibration response and radiating acoustic field are measured respectively, and the results gained in these three cases are analyzed to discuss the effect of reducing structural vibration and radiating noise of the deadening and decoupling materials. The coupling FEM/BEM and the SEA methods are both used in numerical calculation, i.e. the arithmetic of the coupling FEM/BEM method is adopted to calculate the low frequency characteristics and the SEA method is adopted to calculate the medium-high frequencies characteristics of the model. By comparing experimental results with numerical calculation results, it is proved that the algorithm adopted in this paper is reasonable.