The paper considers the long-time behavior for a class of generalized high-order Kirchhoff-type coupled equations, under the corresponding hypothetical conditions, according to the Hadamard graph transformation method...The paper considers the long-time behavior for a class of generalized high-order Kirchhoff-type coupled equations, under the corresponding hypothetical conditions, according to the Hadamard graph transformation method, obtain the equivalent norm in space , and we obtain the existence of a family of the inertial manifolds while such equations satisfy the spectral interval condition.展开更多
The dissipative equilibrium dynamics studies the law of fluid motion under constraints in the contact interface of the coupling system. It needs to examine how con- straints act upon the fluid movement, while the flui...The dissipative equilibrium dynamics studies the law of fluid motion under constraints in the contact interface of the coupling system. It needs to examine how con- straints act upon the fluid movement, while the fluid movement reacts to the constraint field. It also needs to examine the coupling fluid field and media within the contact in- terface, and to use the multi-scale analysis to solve the regular and singular perturbation problems in micro-phenomena of laboratories and macro-phenomena of nature. This pa- per describes the field affected by the gravity constraints. Applying the multi-scale anal- ysis to the complex Fourier harmonic analysis, scale changes, and the introduction of new parameters, the complex three-dimensional coupling dynamic equations are transformed into a boundary layer problem in the one-dimensional complex space. Asymptotic analy- sis is carried out for inter and outer solutions to the perturbation characteristic function of the boundary layer equations in multi-field coupling. Examples are given for disturbance analysis in the flow field, showing the turning point from the index oscillation solution to the algebraic solution. With further analysis and calculation on nonlinear eigenfunctions of the contact interface dynamic problems by the eigenvalue relation, an asymptotic per- turbation solution is obtained. Finally, a boundary layer solution to multi-field coupling problems in the contact interface is obtained by asymptotic estimates of eigenvalues for the G-N mode in the large flow limit. Characteristic parameters in the final form of the eigenvalue relation are key factors of the dissipative dynamics in the contact interface.展开更多
This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the ...This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the phenomenon of nonlinear waves propagating simultaneously in non-uniform optical fibers.By analyzing the Lax pair and the Riemann–Hilbert problem,we aim to provide a comprehensive understanding of the dynamics and interactions of solitons of this system.Furthermore,we study the impacts of group velocity dispersion or the fourth-order dispersion on soliton behaviors.Through appropriate parameter selections,we observe various nonlinear phenomena,including the disappearance of solitons after interaction and their transformation into breather-like solitons,as well as the propagation of breathers with variable periodicity and interactions between solitons with variable periodicities.展开更多
Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the co...Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the coupled KdV and mKdV equations,which may depict the development of shallow water waves,the optical soliton propagation in cubic nonlinear media and the Alfven wave in a cold collision-free plasma.Secondly,the discrete generalized(r,N-r)-fold Darboux transformation is constructed and extended to solve this discrete coupled equation with the fourth-order linear spectral problem,from which diverse exact solutions including usual multi-soliton and semi-rational soliton solutions on the vanishing background,higher-order rational soliton and mixed hyperbolic-rational soliton solutions on the non-vanishing background are derived,and the limit states of some soliton and rational soliton solutions are analyzed by the asymptotic analysis technique.Finally,the numerical simulations are used to explore the dynamical behaviors of some exact soliton solutions.These results may be helpful for understanding some physical phenomena in fields of shallow water wave,optics,and plasma physics.展开更多
We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localiz...We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localized wave solution,the N-fold generalized Darboux transformation is given.Under the condition that the characteristic equation admits a double-root,we present the expression of the first-order interactional solution.Then we graphically analyze the dynamics of the breather and rogue wave.Due to the simultaneous existence of nonlinear and self-steepening terms in the equation,different profiles in two components for the breathers are presented.展开更多
We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota b...We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota bilinear method,and analyze the dynamical behaviors of these nondegenerate solitons.The results show that the shapes of the nondegenerate solitons are controllable by selecting different wave numbers,varying diffraction and nonlinearity parameters.In addition,when all the variable coefficients are chosen to be constant,the solutions obtained in this study reduce to the shape-preserving nondegenerate solitons.Finally,it is found that the nondegenerate two-soliton solutions can be bounded to form a double-hump two-soliton molecule after making the velocity of one double-hump soliton resonate with that of the other one.展开更多
In this paper, exact solutions are derived for four coupled complex nonlinear different equations by using simplified transformation method and algebraic equations.
In this paper, we investigate a new type of fractional coupled nonlinear equations. By introducing the fractional derivative that satisfies the Caputo's definition, we directly extend the applications of the Adomian ...In this paper, we investigate a new type of fractional coupled nonlinear equations. By introducing the fractional derivative that satisfies the Caputo's definition, we directly extend the applications of the Adomian decomposition method to the new system. As a result, with the aid of Maple, the realistic and convergent rapidly series solutions are obtained with easily computable components. Two famous fractional coupled examples: KdV and mKdV equations, are used to illustrate the efficiency and accuracy of the proposed method.展开更多
The new rational form solutions to the elliptic equation are shown, and then these solutions to the elliptic equation are taken as a transformation and applied to solve nonlinear coupled wave equations. It is shown th...The new rational form solutions to the elliptic equation are shown, and then these solutions to the elliptic equation are taken as a transformation and applied to solve nonlinear coupled wave equations. It is shown that more novel kinds of solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form,and so on.展开更多
The envelope periodic solutions to some nonlinear coupled equations are obtained by means of the Jacobielliptic function expansion method. And these envelope periodic solutions obtained by this method can degenerate t...The envelope periodic solutions to some nonlinear coupled equations are obtained by means of the Jacobielliptic function expansion method. And these envelope periodic solutions obtained by this method can degenerate tothe envelope shock wave solutions and/or the envelope solitary wave solutions.展开更多
The coupled equation method (CEM) has been applied to investigating the resonance structures for the ground state 1s^22s^ 2S of the neutral lithium from the first threshold up to 64.5 eV. Resonance structures of ato...The coupled equation method (CEM) has been applied to investigating the resonance structures for the ground state 1s^22s^ 2S of the neutral lithium from the first threshold up to 64.5 eV. Resonance structures of atomic lithium due to single excitations of the ls and 2s electrons are studied by infinite-order calculations in detail. The effect of spin-orbit splitting is also included for some of the low-lying ls2snp(↑↓) resonance, and the influence of the interference between 1s^2s^3 Snp .↓ and 1s2s^ 1 Snp ↑ states on the resonance structure has been confirmed theoretically. The results show that the presented technique can give the reasonable resonance structures very well in photoionization processes.展开更多
In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equat...In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.展开更多
The energy preserving average vector field (AVF) method is applied to the coupled Schr6dinger-KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction di...The energy preserving average vector field (AVF) method is applied to the coupled Schr6dinger-KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction discretization. In order to accelerate our simulation, the split-step technique is used. The numerical experiments show that the non-splitting scheme and splitting scheme are both effective, and have excellent long time numerical behavior. The comparisons show that the splitting scheme is faster than the non-splitting scheme, but it is not as good as the non-splitting scheme in preserving the invariants.展开更多
Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the d...Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the dependent variable transformations and symbolic computation, GCCKdV equations are transformed into their bilinear forms, based on which the one- and two-soliton solutions are obtained. Through the interactions of two solitons, the regular elastic collision are shown. When the wave numbers are complex, three kinds of solitonie collisions are presented: (i) two solitons merge and separate from each other periodically; (ii) two solitons exhibit the attraction and repulsion nearly twice, and finally separate from each other after such type of interaction; (iii) two solitons are ftuctuant in the central region of the collision. Propagation features of solitons are investigated with the effects of the coefficients in the GCCKdV equations considered. Velocity of soliton increase with the a increasing. Amplitude of v increase with the a increasing and decrease with the β increasing.展开更多
The coupled Korteweg-de Vries (CKdV) equation with self-consistent sources (CKdVESCS) and its Lax representation are derived. We present a generalized binary Darboux transformation (GBDT) with an arbitrary time-...The coupled Korteweg-de Vries (CKdV) equation with self-consistent sources (CKdVESCS) and its Lax representation are derived. We present a generalized binary Darboux transformation (GBDT) with an arbitrary time- dependent function for the CKdVESCS as well as the formula for the N-times repeated GBDT. This GBDT provides non-auto-Biicklund transformation between two CKdVESCSs with different degrees of sources and enables us to construct more generM solutions with N arbitrary t-dependent functions. We obtain positon, negaton, complexiton, and negaton- positon solutions of the CKdVESCS.展开更多
Using the machinery of Lie group analysis,the nonlinear system of coupled Burgers-type equations is studied.Using the infinitesimal generators in the optimal system of subalgebra of the said Lie algebras,it leads to t...Using the machinery of Lie group analysis,the nonlinear system of coupled Burgers-type equations is studied.Using the infinitesimal generators in the optimal system of subalgebra of the said Lie algebras,it leads to two nonequivalent similarity transformations by using it we obtain two reductions in the form of system of nonlinear ordinary differential equations.The search for solutions of these systems by using the G'/G-method has yielded certain exact solutions expressed by rational functions,hyperbolic functions,and trigonometric functions.Some figures are given to show the properties of the solutions.展开更多
A quite general coupled variable coefficient modified KdV (VCmKdV) equation in a two-layer fluid systemis derived by means of the reductive perturbation method.Making use of the CK's direct method,some similarityr...A quite general coupled variable coefficient modified KdV (VCmKdV) equation in a two-layer fluid systemis derived by means of the reductive perturbation method.Making use of the CK's direct method,some similarityreductions of the coupled VCmKdV equation are obtained and their corresponding group explanations are discussed.Some exact solutions of the coupled equations are also presented.展开更多
In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical e...In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical experiments are given to verify the efficiency and accuracy of our method. Moreover the numerical results show that the method can approximate sharp fronts accurately with minimal oscillation.展开更多
The symmetries, symmetry reductions, and exact solutions of a coupled nonlinear Schrodinger (CNLS) equation derived from the governing system for atmospheric gravity waves are researched by means of classical Lie gr...The symmetries, symmetry reductions, and exact solutions of a coupled nonlinear Schrodinger (CNLS) equation derived from the governing system for atmospheric gravity waves are researched by means of classical Lie group approach in this paper. Calculation shows the CNLS equation is invariant under some Galilean transformations, scaling transformations, phase shifts, and space-time translations. Some ordinary differential equations are derived from the CNLS equation. Several exact solutions including envelope cnoidal waves, solitary waves and trigonometric function solutions for the CNLS equation are also obtained by making use of symmetries.展开更多
Bilinear forms of the coupled Gerdjikov–Ivanov equation are derived. The $N$-soliton solutions to the equation are obtained by Hirota's method. It is interesting that the two-soliton solutions can generate the rogue...Bilinear forms of the coupled Gerdjikov–Ivanov equation are derived. The $N$-soliton solutions to the equation are obtained by Hirota's method. It is interesting that the two-soliton solutions can generate the rogue-wave-like phenomena by selecting special parameters. The equation can be reduced to the Gerdjikov–Ivanov equation as well as its bilinear forms and its solutions.展开更多
文摘The paper considers the long-time behavior for a class of generalized high-order Kirchhoff-type coupled equations, under the corresponding hypothetical conditions, according to the Hadamard graph transformation method, obtain the equivalent norm in space , and we obtain the existence of a family of the inertial manifolds while such equations satisfy the spectral interval condition.
基金Project supported by the National Natural Science Foundation of China (No. 10871225)the Pujiang Talent Program of China (No. 06PJ14416)
文摘The dissipative equilibrium dynamics studies the law of fluid motion under constraints in the contact interface of the coupling system. It needs to examine how con- straints act upon the fluid movement, while the fluid movement reacts to the constraint field. It also needs to examine the coupling fluid field and media within the contact in- terface, and to use the multi-scale analysis to solve the regular and singular perturbation problems in micro-phenomena of laboratories and macro-phenomena of nature. This pa- per describes the field affected by the gravity constraints. Applying the multi-scale anal- ysis to the complex Fourier harmonic analysis, scale changes, and the introduction of new parameters, the complex three-dimensional coupling dynamic equations are transformed into a boundary layer problem in the one-dimensional complex space. Asymptotic analy- sis is carried out for inter and outer solutions to the perturbation characteristic function of the boundary layer equations in multi-field coupling. Examples are given for disturbance analysis in the flow field, showing the turning point from the index oscillation solution to the algebraic solution. With further analysis and calculation on nonlinear eigenfunctions of the contact interface dynamic problems by the eigenvalue relation, an asymptotic per- turbation solution is obtained. Finally, a boundary layer solution to multi-field coupling problems in the contact interface is obtained by asymptotic estimates of eigenvalues for the G-N mode in the large flow limit. Characteristic parameters in the final form of the eigenvalue relation are key factors of the dissipative dynamics in the contact interface.
基金supported by the Natural Science Foundation of Hebei Province,China (Grant No.A2021502004)the Fundamental Research Funds for the Central Universities (Grant No.2024MS126).
文摘This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the phenomenon of nonlinear waves propagating simultaneously in non-uniform optical fibers.By analyzing the Lax pair and the Riemann–Hilbert problem,we aim to provide a comprehensive understanding of the dynamics and interactions of solitons of this system.Furthermore,we study the impacts of group velocity dispersion or the fourth-order dispersion on soliton behaviors.Through appropriate parameter selections,we observe various nonlinear phenomena,including the disappearance of solitons after interaction and their transformation into breather-like solitons,as well as the propagation of breathers with variable periodicity and interactions between solitons with variable periodicities.
基金Project supported by the National Natural Science Foundation of China (Grant No.12071042)Beijing Natural Science Foundation (Grant No.1202006)。
文摘Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the coupled KdV and mKdV equations,which may depict the development of shallow water waves,the optical soliton propagation in cubic nonlinear media and the Alfven wave in a cold collision-free plasma.Secondly,the discrete generalized(r,N-r)-fold Darboux transformation is constructed and extended to solve this discrete coupled equation with the fourth-order linear spectral problem,from which diverse exact solutions including usual multi-soliton and semi-rational soliton solutions on the vanishing background,higher-order rational soliton and mixed hyperbolic-rational soliton solutions on the non-vanishing background are derived,and the limit states of some soliton and rational soliton solutions are analyzed by the asymptotic analysis technique.Finally,the numerical simulations are used to explore the dynamical behaviors of some exact soliton solutions.These results may be helpful for understanding some physical phenomena in fields of shallow water wave,optics,and plasma physics.
基金the National Natural Science Foundation of China(Grant Nos.11871232 and 12201578)Natural Science Foundation of Henan Province,China(Grant Nos.222300420377 and 212300410417)。
文摘We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localized wave solution,the N-fold generalized Darboux transformation is given.Under the condition that the characteristic equation admits a double-root,we present the expression of the first-order interactional solution.Then we graphically analyze the dynamics of the breather and rogue wave.Due to the simultaneous existence of nonlinear and self-steepening terms in the equation,different profiles in two components for the breathers are presented.
基金supported by the National Natural Science Foundation of China (Grant Nos.11975204 and 12075208)the Project of Zhoushan City Science and Technology Bureau (Grant No.2021C21015)the Training Program for Leading Talents in Universities of Zhejiang Province。
文摘We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota bilinear method,and analyze the dynamical behaviors of these nondegenerate solitons.The results show that the shapes of the nondegenerate solitons are controllable by selecting different wave numbers,varying diffraction and nonlinearity parameters.In addition,when all the variable coefficients are chosen to be constant,the solutions obtained in this study reduce to the shape-preserving nondegenerate solitons.Finally,it is found that the nondegenerate two-soliton solutions can be bounded to form a double-hump two-soliton molecule after making the velocity of one double-hump soliton resonate with that of the other one.
文摘In this paper, exact solutions are derived for four coupled complex nonlinear different equations by using simplified transformation method and algebraic equations.
基金The project supported by National Natural Science Foundation of China under Grant No.10735030Shanghai Leading Academic Discipline Project under Grant No.B412+2 种基金Natural Science Foundation of Zhejiang Province under Grant No.Y604056Doctoral Science Foundation of Ningbo City under Grant No.2005A61030Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT0734
文摘In this paper, we investigate a new type of fractional coupled nonlinear equations. By introducing the fractional derivative that satisfies the Caputo's definition, we directly extend the applications of the Adomian decomposition method to the new system. As a result, with the aid of Maple, the realistic and convergent rapidly series solutions are obtained with easily computable components. Two famous fractional coupled examples: KdV and mKdV equations, are used to illustrate the efficiency and accuracy of the proposed method.
文摘The new rational form solutions to the elliptic equation are shown, and then these solutions to the elliptic equation are taken as a transformation and applied to solve nonlinear coupled wave equations. It is shown that more novel kinds of solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form,and so on.
文摘The envelope periodic solutions to some nonlinear coupled equations are obtained by means of the Jacobielliptic function expansion method. And these envelope periodic solutions obtained by this method can degenerate tothe envelope shock wave solutions and/or the envelope solitary wave solutions.
基金This work was supported by the Natural Science Foundation of Yantai Normal University under Grant No.22270301 and L20072804.
文摘The coupled equation method (CEM) has been applied to investigating the resonance structures for the ground state 1s^22s^ 2S of the neutral lithium from the first threshold up to 64.5 eV. Resonance structures of atomic lithium due to single excitations of the ls and 2s electrons are studied by infinite-order calculations in detail. The effect of spin-orbit splitting is also included for some of the low-lying ls2snp(↑↓) resonance, and the influence of the interference between 1s^2s^3 Snp .↓ and 1s2s^ 1 Snp ↑ states on the resonance structure has been confirmed theoretically. The results show that the presented technique can give the reasonable resonance structures very well in photoionization processes.
文摘In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.
基金supported by the National Natural Science Foundation of China(Grant No.91130013)the Open Foundation of State Key Laboratory of HighPerformance Computing of China
文摘The energy preserving average vector field (AVF) method is applied to the coupled Schr6dinger-KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction discretization. In order to accelerate our simulation, the split-step technique is used. The numerical experiments show that the non-splitting scheme and splitting scheme are both effective, and have excellent long time numerical behavior. The comparisons show that the splitting scheme is faster than the non-splitting scheme, but it is not as good as the non-splitting scheme in preserving the invariants.
基金*Supported by the National Natural Science Foundation of China under Grant No. 60772023, by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. SKLSDE-07-001, Beijing University of Aeronautics and Astronautics, by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901, and by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 200800130006, Chinese Ministry of Education.
文摘Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the dependent variable transformations and symbolic computation, GCCKdV equations are transformed into their bilinear forms, based on which the one- and two-soliton solutions are obtained. Through the interactions of two solitons, the regular elastic collision are shown. When the wave numbers are complex, three kinds of solitonie collisions are presented: (i) two solitons merge and separate from each other periodically; (ii) two solitons exhibit the attraction and repulsion nearly twice, and finally separate from each other after such type of interaction; (iii) two solitons are ftuctuant in the central region of the collision. Propagation features of solitons are investigated with the effects of the coefficients in the GCCKdV equations considered. Velocity of soliton increase with the a increasing. Amplitude of v increase with the a increasing and decrease with the β increasing.
基金The project supported by the National Fundamental Research Program of China(973 Program)under Grant No.2007CB814800National Natural Science Foundation of China under Grant No.10601028
文摘The coupled Korteweg-de Vries (CKdV) equation with self-consistent sources (CKdVESCS) and its Lax representation are derived. We present a generalized binary Darboux transformation (GBDT) with an arbitrary time- dependent function for the CKdVESCS as well as the formula for the N-times repeated GBDT. This GBDT provides non-auto-Biicklund transformation between two CKdVESCSs with different degrees of sources and enables us to construct more generM solutions with N arbitrary t-dependent functions. We obtain positon, negaton, complexiton, and negaton- positon solutions of the CKdVESCS.
文摘Using the machinery of Lie group analysis,the nonlinear system of coupled Burgers-type equations is studied.Using the infinitesimal generators in the optimal system of subalgebra of the said Lie algebras,it leads to two nonequivalent similarity transformations by using it we obtain two reductions in the form of system of nonlinear ordinary differential equations.The search for solutions of these systems by using the G'/G-method has yielded certain exact solutions expressed by rational functions,hyperbolic functions,and trigonometric functions.Some figures are given to show the properties of the solutions.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10547124,10475055,and 90503006the Youth Foundation of Shanghai Jiao Tong University
文摘A quite general coupled variable coefficient modified KdV (VCmKdV) equation in a two-layer fluid systemis derived by means of the reductive perturbation method.Making use of the CK's direct method,some similarityreductions of the coupled VCmKdV equation are obtained and their corresponding group explanations are discussed.Some exact solutions of the coupled equations are also presented.
基金supported by the National Natural Science Foundation of China(Grant No.11171038)
文摘In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical experiments are given to verify the efficiency and accuracy of our method. Moreover the numerical results show that the method can approximate sharp fronts accurately with minimal oscillation.
基金supported by the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institutethe National Natural Science Foundation of China under Grant Nos. 10735030 and 90503006
文摘The symmetries, symmetry reductions, and exact solutions of a coupled nonlinear Schrodinger (CNLS) equation derived from the governing system for atmospheric gravity waves are researched by means of classical Lie group approach in this paper. Calculation shows the CNLS equation is invariant under some Galilean transformations, scaling transformations, phase shifts, and space-time translations. Some ordinary differential equations are derived from the CNLS equation. Several exact solutions including envelope cnoidal waves, solitary waves and trigonometric function solutions for the CNLS equation are also obtained by making use of symmetries.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11671177 and 11271168the Jiangsu Qing Lan Project(2014)the Six Talent Peaks Project of Jiangsu Province under Grant No 2016-JY-08
文摘Bilinear forms of the coupled Gerdjikov–Ivanov equation are derived. The $N$-soliton solutions to the equation are obtained by Hirota's method. It is interesting that the two-soliton solutions can generate the rogue-wave-like phenomena by selecting special parameters. The equation can be reduced to the Gerdjikov–Ivanov equation as well as its bilinear forms and its solutions.