To explore the variation of permeability and deformation behaviors of a fractured rock mass in high water pressure,a high pressure permeability test(HPPT),including measuring sensors of pore water pressure and displ...To explore the variation of permeability and deformation behaviors of a fractured rock mass in high water pressure,a high pressure permeability test(HPPT),including measuring sensors of pore water pressure and displacement of the rock mass,was designed according to the hydrogeological condition of Heimifeng pumped storage power station.With the assumption of radial water flow pattern in the rock mass during the HPPT,a theoretical formula was presented to estimate the coefficient of permeability of the rock mass using water pressures in injection and measuring boreholes.The variation in permeability of the rock mass with the injected water pressure was studied according to the suggested formula.By fitting the relationship between the coefficient of permeability and the injected water pressure,a mathematical expression was obtained and used in the numerical simulations.For a better understanding of the relationship between the pore water pressure and the displacement of the rock mass,a 3D numerical method based on a coupled hydro-mechanical theory was employed to simulate the response of the rock mass during the test.By comparison of the calculated and measured data of pore water pressure and displacement,the deformation behaviors of the rock mass were analyzed.It is shown that the variation of displacement in the fractured rock mass is caused by water flow passing through it under high water pressure,and the rock deformation during the test could be calculated by using the coupled hydro-mechanical model.展开更多
Within the multi-barrier system for high-level waste disposal,the technological gap formed by combined buffer material block becomes the weak part of buffer layer.In this paper,Gaomiaozi bentonite buffer material with...Within the multi-barrier system for high-level waste disposal,the technological gap formed by combined buffer material block becomes the weak part of buffer layer.In this paper,Gaomiaozi bentonite buffer material with technological gap was studied,the heat transfer induced by liquid water flow and water vapor was embedded into the energy conservation equation.Based on the Barcelona basic model,the coupled thermo-hydro-mechanical model of unsaturated bentonite was established by analyzing the swelling process of bentonite block and the compression process of joint material.The China-Mock-up test was adopted to compare the numerical calculation results with the test results so as to verify the rationality of the proposed model.On this basis,the effect of joint self-healing on dry density,thermal conductivity and permeability coefficient of buffer material was further analyzed.The results show that,with bentonite hydrating and swelling,the joint material gradually increases in dry density,and exhibits comparatively uniform hydraulic and thermal conductivity properties as compacted bentonite block.As a result,the buffer material gradually shifts to homogenization due to the coordinated deformation.展开更多
The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current stat...The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.展开更多
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes...A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.展开更多
The interaction between multiple fractures is important in the analysis of rock fracture propagation,fracture network evolution and stability and integrity of rocks under hydro-mechanical(HM)coupling conditions.At pre...The interaction between multiple fractures is important in the analysis of rock fracture propagation,fracture network evolution and stability and integrity of rocks under hydro-mechanical(HM)coupling conditions.At present,modeling the mechanical behavior of multiple fractures is still challenging.Under the condition of multiple fractures,the opening,closing,sliding,propagation and penetration of fractures become more complicated.In order to simulate the HM coupling behavior of multi-fracture system,the paper presents a novel numerical scheme,including mesh reconstruction and topology generation algorithm,to efficiently and accurately represent fractures and their propagation process,and a potential function-based algorithm to address contact problem.The fracture contact algorithm does not need to set contact pairs and thus is suitable for complex contact situations from small to large deformations induced by HM loading.The topology of fracture interfaces is constructed by the dynamic adding algorithm,which makes the mesh reconstruction more rapid in the modeling of fracturing process,especially in the case of multiple fractures intersections.The numerical scheme is implemented in CASRock,a self-developed numerical code,to simulate the propagation process of rock fractures and the interaction of multiple fractures under the condition of HM coupling.To verify the suitability of the code,a series of tests were performed.The code was then applied to simulate hydraulic fracture propagation and fracture interactions caused by fluid injection.The ability of this method to study fracture propagation,multi-fracture interaction and fracture network evolution under hydro-mechanical coupling conditions is demonstrated.展开更多
Rock mass is a fractured porous medium usually subjected to complex geostress and fluid pressure simultaneously.Moreover,the properties of rock mass change in time and space due to mining-induced fractures.Therefore,i...Rock mass is a fractured porous medium usually subjected to complex geostress and fluid pressure simultaneously.Moreover,the properties of rock mass change in time and space due to mining-induced fractures.Therefore,it is always challenging to accurately measure rock mass properties.In this study,a three-dimensional(3D)microseismic(MS)data-driven damage model for jointed rock mass under hydro-mechanical coupling conditions is proposed.It is a 3D finite element model that takes seepage,damage and stress field effects into account jointly.Multiple factors(i.e.joints,water and microseismicity)are used to optimize the rock mass mechanical parameters at different scales.The model is applied in Shirengou iron mine to study the damage evolution of rock mass and assess the crown pillar stability during the transition from open-pit to underground mining.It is found that the damage pattern is mostly controlled by the structure,water and rock mass parameters.The damage pattern is evidently different from the two-dimensional result and is more consistent with the field observations.This difference is caused by the MS-derived damage acting on the rock mass.MS data are responsible for gradually correcting the damage zone,changing the direction in which it expands,and promoting it to evolve close to reality.For the crown pillar,the proposed model yields a more trustworthy safety factor.In order to guarantee the stability of the pillar,it is suggested to take waterproof and reinforcement measures in areas with a high degree of damage.展开更多
The technology of pantograph sinking in the cavity is generally adopted in the new generation of high-speed trains in China for aerodynamic noise reduction in this region. This study takes a high-speed train with a 4-...The technology of pantograph sinking in the cavity is generally adopted in the new generation of high-speed trains in China for aerodynamic noise reduction in this region. This study takes a high-speed train with a 4-car formation and a pantograph as the research object and compares the aerodynamic acoustic performance of two scale models, 1/8 and 1/1, using large eddy simulation and Ffowcs Williams–Hawkings integral equation. It is found that there is no direct scale similarity between their aeroacoustic performance. The 1/1 model airflow is separated at the leading edge of the panhead and reattached to the panhead, and its vortex shedding Strouhal number(St) is 0.17. However, the 1/8 model airflow is separated directly at the leading edge of the panhead, and its St is 0.13. The cavity's vortex shedding frequency is in agreement with that calculated by the Rooster empirical formula. The two scale models exhibit some similar characteristics in distribution of sound source energy, but the energy distribution of the 1/8 model is more concentrated in the middle and lower regions. The contribution rates of their middle and lower regions to the radiated noise in the two models are 27.3% and 87.2%, respectively. The peak frequencies of the radiated noise from the 1/1 model are 307 and 571 Hz. The 307 Hz is consistent with the frequency of panhead vortex shedding, and the 571 Hz is more likely to be the result of the superposition of various components. In contrast, the peak frequencies of the radiated noise from the 1/8 scale model are 280 and 1970 Hz. The 280 Hz comes from the shear layer oscillation between the cavity and the bottom frame, and the 1970 Hz is close to the frequency at which the panhead vortex sheds. This shows that the scaled model results need to be corrected before applying to the full-scale model.展开更多
In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spat...In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.展开更多
Radio frequency capacitively coupled plasmas(RF CCPs)play a pivotal role in various applications in etching and deposition processes on a microscopic scale in semiconductor manufacturing.In the discharge process,the p...Radio frequency capacitively coupled plasmas(RF CCPs)play a pivotal role in various applications in etching and deposition processes on a microscopic scale in semiconductor manufacturing.In the discharge process,the plasma series resonance(PSR)effect is easily observed in electrically asymmetric and geometrically asymmetric discharges,which could largely influence the power absorption,ionization rate,etc.In this work,the PSR effect arising from geometrically and electrically asymmetric discharge in argon-oxygen mixture gas is mainly investigated by using a plasma equivalent circuit model coupled with a global model.At relatively low pressures,as Ar content(α)increases,the inductance of the bulk is weakened,which leads to a more obvious PSR phenomenon and a higher resonance frequency(ω_(psr)).When the Ar content is fixed,varying the pressure and gap distance could also have different effects on the PSR effect.With the increase of the pressure,the PSR frequency shifts towards the higher order,but in the case of much higher pressure,the PSR oscillation would be strongly damped by frequent electron-neutral collisions.With the increase of the gap distance,the PSR frequency becomes lower.In addition,electrically asymmetric waveforms applied to a geometrically asymmetric chamber may weaken or enhance the asymmetry of the discharge and regulate the PSR effect.In this work,the Ar/O_(2) electronegative mixture gas is introduced in a capacitive discharge to study the PSR effect under geometric asymmetry effect and electrical asymmetry effect,which can provide necessary guidance in laboratory research and current applications.展开更多
The objective of this paper is to develop a methodology for calibration of a discrete element grain-based model(GBM)to replicate the hydro-mechanical properties of a brittle rock measured in the laboratory,and to appl...The objective of this paper is to develop a methodology for calibration of a discrete element grain-based model(GBM)to replicate the hydro-mechanical properties of a brittle rock measured in the laboratory,and to apply the calibrated model to simulating the formation of excavation damage zone(EDZ)around underground excavations.Firstly,a new cohesive crack model is implemented into the universal distinct element code(UDEC)to control the fracturing behaviour of materials under various loading modes.Next,a methodology for calibration of the components of the UDEC-Voronoi model is discussed.The role of connectivity of induced microcracks on increasing the permeability of laboratory-scale samples is investigated.The calibrated samples are used to investigate the influence of pore fluid pressure on weakening the drained strength of the laboratory-scale rock.The validity of the Terzaghi’s effective stress law for the drained peak strength of low-porosity rock is tested by performing a series of biaxial compression test simulations.Finally,the evolution of damage and pore pressure around two unsupported circular tunnels in crystalline granitic rock is studied.展开更多
Mechanical failure of materials adjacent to the production cavity and material disaggregation caused by fluid drag are considered as the most important parameters that affect sand production.In light of such factors,t...Mechanical failure of materials adjacent to the production cavity and material disaggregation caused by fluid drag are considered as the most important parameters that affect sand production.In light of such factors,the coupling of two mechanisms-mechanical instability and hydrodynamic erosion-is indispensable in order to model this phenomenon successfully.This paper examines the applicability of a coupled hydro-mechanical erosion criterion for simulating sand production using the finite element method.The porous medium was considered fully saturated.The onset of sanding and production of sand were predicted by coupling mechanical failure and subsequent erosion of the grain particles utilizing a sanding model.To consider the erosion process,the Papamichos and Stavropoulou(1998)’s sand erosion criterion was incorporated into the finite element code.Arbitrary Lagrangian-Eulerian(ALE)adaptive mesh approach was used to account for large amounts of erosive material loss.Besides,in order to address the problem of severe mesh distortion,the“mesh mapping technique”was employed.Sand production in a horizontal wellbore and in a field case was simulated to demonstrate capabilities of the proposed model.In addition,principal parameters affecting sand production,including in situ stresses,cohesion,perforation orientation,and drawdown were examined.The results indicated the efficiency of the model used in evaluation of sanding in the field.Parametric studies indicated that in situ stresses and formation cohesion could be considered as dominant factors affecting the amount of sand production.展开更多
Sandstone“injectite”intrusions are generally developed by the fluidization of weakly cemented sandstones and their subsequent injection into fractured reservoirs.In this work,a continuum coupled hydromechanical mode...Sandstone“injectite”intrusions are generally developed by the fluidization of weakly cemented sandstones and their subsequent injection into fractured reservoirs.In this work,a continuum coupled hydromechanical model TOUGH-FLAC3D is applied to simulate the discrete fracture network in large-scale sand injectite complexes.A sand production constitutive model is incorporated to consider the formation of sand through plastic deformation and its influence on evolution of fracture permeability.Overpressures in the fluidized sand slurry drives the injection with sand dikes intruded upwards,typically into previously low permeability“tight”mudstone formations.The contrast in poroelastic properties of the underlying weak sandstone and overlying injectite receptor directly affects the evolution of fracture aperture both during and after intrusion.Fluid drainage into the unconsolidated matrix may reduce the extent of fracture aperture growth,through the formation of shear bands.The results of this work have broad implications related to the emplacement of sandstone intrusions and subsequent hydrocarbon accumulation,maturation and then production.展开更多
Callovo-Oxfordian (COx) argillite obtained from the excavation of high-level radioactive waste geological disposal has been evaluated as an alternative sealing/backfill material in France. This paper presents an exp...Callovo-Oxfordian (COx) argillite obtained from the excavation of high-level radioactive waste geological disposal has been evaluated as an alternative sealing/backfill material in France. This paper presents an experimental investigation into the hydro-mechanical behaviour of compacted crushed COx argillite. A series of oedorneter compressive tests including various loading-unloading cycles were conducted on COx argillite powders at different initial water contents. After reaching the desired dry density (2.0 Mg/m^3), the vertical stress was reduced to different levels (7.0 and 0.5 MPa) and the compacted sample was then flooded under constant volume conditions while measuring the changes in the vertical stress. It was found that the initial water content significantly affects the compressive behaviour. The measured saturated hydraulic conductivity is less than 1×10^-10m/s.展开更多
A methodology for identifying and calibrating the material parameters for a coupled hydro-mechanical problem is presented in this pape r.For validation purpose,a laboratory-based water infiltration test was numericall...A methodology for identifying and calibrating the material parameters for a coupled hydro-mechanical problem is presented in this pape r.For validation purpose,a laboratory-based water infiltration test was numerically simulated using finite element method(FEM).The test was conducted using a self-designed column-type experimental device,which mimicked the wetting process of a candidate backfill material in a nuclear waste repository.The real-time measurements of key state variables(e.g.water content,relative humidity,temperature,and total stresses)were performed with the monitoring sensors along the height of cylindrical soil sample.For numerical simulation,the modified Barcelona Basic Model(BBM)along with soil-water retention model for compacted bentonite was used.It shows that the identified model parameters successfully captured the moisture migration process under an applied hydraulic gradient in a bentonite-based compacted soil sample.A comparison between the measured and predicted values of total stresses both in axial and lateral directions along with other state variables revealed that heterogeneous moisture content was distributed along the hydration-path,resulting in non-uniform stress-deformation characteristics of soil.展开更多
Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under sat...Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit(ADE)scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in nonuniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourthorder finite difference(FD) approximation to the spatial derivatives of the axisymmetric fluid-diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps,giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua(FLAC). This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%-50% that of FLAC’s basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%-1.8%.展开更多
High geo-temperature is one of the inevitable geological disasters in deep engineering such as resource extraction,space development,and energy utilization.One of the key issues is to understand the mechanical propert...High geo-temperature is one of the inevitable geological disasters in deep engineering such as resource extraction,space development,and energy utilization.One of the key issues is to understand the mechanical properties and failure mechanism of high-temperature rock disturbed by low-temperature airflow after excavation.Therefore,.the experimental and numerical investigation were carried out to study the impact of cooling rate on mechanical properties and failure mechanism of high temperature sandstone.First,uniaxial compression experiments of high temperature sandstone at different real-time cooling rates were carried out to study the mechanical properties and failure modes.The experimental results indicate that the cooling rate has a significant effect on the mechanical properties and failure modes of sandstone.The peak strain,peak stress,and elastic modulus decrease with an increase in cooling rate,and the fragmentation degree after failure increases gradually.Moreover,the equivalent numerical model of heterogeneous sandstone was established using particle flow code(PFC)to reveal the failure mechanism.The results indicate that the sandstone is dominated by intragrain failure in the cooling stage,the number of microcracks is exponentially related to the cooling rate,and the higher the cooling rate,the more cracks are concentrated in the exterior region.Under axial loading,the tensile stress is mostly distributed along the radial direction,and the damage in the cooling stage is mostly due to the fracture of the radial bond.In addition,axial loading,temperature gradient and thermal stress mismatch between adjacent minerals are the main reasons for the damage of sandstone in the cooling stage.Moreover,the excessive temperature gradient in the exterior region of the sandstone is the main reason for the damage concentration in this region.展开更多
Coupled effects of mechanical and electronic behavior in single walled carbon nanotubes are investigated by using quantum mechanics and quantum molecular dynamics.It is found that external applied electric fields can ...Coupled effects of mechanical and electronic behavior in single walled carbon nanotubes are investigated by using quantum mechanics and quantum molecular dynamics.It is found that external applied electric fields can cause charge polarization and significant geometric deformation in metallic and semi-metallic carbon nanotubes.The electric induced axial tension ratio can be up to 10% in the armchair tube and 8.5% in the zigzag tube.Pure external applied load has little effect on charge distribution,but indeed influences the energy gap.Tensile load leads to a narrower energy gap and compressive load increases the gap.When the CNT is tensioned under an external electric field,the effect of mechanical load on the electronic structures of the CNT becomes significant,and the applied electric field may reduce the critical mechanical tension load remarkably.Size effects are also discussed.展开更多
The deformation and failure of soft rock affected by hydro-mechanical(HM) effect are one of the most concerns in geotechnical engineering, which are basically attributed to the grain sliding of soft rock. This study...The deformation and failure of soft rock affected by hydro-mechanical(HM) effect are one of the most concerns in geotechnical engineering, which are basically attributed to the grain sliding of soft rock. This study tried to develop a dissolution-diffusion sliding model for the typical red bed soft rock in South China. Based on hydration film, mineral dissolution and diffusion theory, and geochemical thermodynamics, a dissolution-diffusion sliding model with the HM effect was established to account for the sliding rate. Combined with the digital image processing technology, the relationship between the grain size of soft rock and the amplitude of sliding surface was presented. An equation for the strain rate of soft rocks under steady state was also derived. The reliability of the dissolution-diffusion sliding model was verified by triaxial creep tests on the soft rock with the HM coupling effect and by the relationship between the inversion average disjoining pressure and the average thickness of the hydration film. The results showed that the sliding rate of the soft rock grains was affected significantly by the waviness of sliding surface, the shear stress, and the average thickness of hydration film. The average grain size is essential for controlling the steady-state creep rate of soft rock. This study provides a new idea for investigating the deformation and failure of soft rock with the HM effect.展开更多
The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between c...The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between clay core-wall and concrete cut-offwall,so the hydro-mechanical coupling mechanisms on the joint under high stress,high hydraulic gradient,and large shear deformation are of great importance for the evaluation of dam safety.The hydro-mechanical coupling characteristics of the joint of the highly plastic clay and the concrete cut-off wall in a high earth and rockfill dam in China were studied by using a newly designed soil-structure contact erosion apparatus.The experimental results indicate that:1) Shear failure on the joint is due to the hydro-mechanical coupling effect of stress and seepage failure.The seepage failure will induce the final shear failure when the ratio of deviatoric stress to confining pressure is within 1.0-1.2; 2) A negative exponential permeability empirical model for the joint denoted by a newly defined principal stress function,which considers the coupling effect of confining pressure and axial pressure on the permeability,is established based on hydro-mechanical coupling experiments.3) The variation of the settlement before and after seepage failure is very different.The settlement before seepage failure changes very slowly,while it increases significantly after the seepage failure.4) The stress-strain relationship is of a strain softening type.5) Flow along the joint still follows Darcian flow rule.The results will provide an important theoretical basis for the further evaluation on the safety of the high earth and rockfill dam.展开更多
The sunny-shady slopes effect is a phenomenon that impacts the temperature distribution of high-speed railway subgrades,resulting in uneven frost heaving deformation on the subgrade surface,which in turn causes static...The sunny-shady slopes effect is a phenomenon that impacts the temperature distribution of high-speed railway subgrades,resulting in uneven frost heaving deformation on the subgrade surface,which in turn causes static irregularity in the slab track.Based on the hydraulics theory,a thermal-hydro-mechanical(THM)coupled model of frozen soil is established and verified.We explore the process and characteristics of the temperature field and deformation of soil during the freezing process of high-speed railway subgrades and analyze the track irregularity variation law of China Railway Track SystemⅢslab tracks under uneven frost heaving deformation.The results show that,because the left and right slopes of high-speed railway subgrade are exposed to different amounts of solar radiation,which is the key factor causing uneven frost heaving of subgrade.Different strike angles cause changes in temperature of the subgrade’s upper part and the frost heaving amount on the surface,leading to differences in the deformation of the slab track structure:Increased strike angle weakens the rail level irregularity of the down line and marginally increases the rail level irregularity of the up line,and these become consistent in north-south directions.Therefore,when selecting railway lines in seasonal frozen areas,the west-east direction should be avoided to prevent the extremes in sunny-shady slopes effect on subgrades.展开更多
文摘To explore the variation of permeability and deformation behaviors of a fractured rock mass in high water pressure,a high pressure permeability test(HPPT),including measuring sensors of pore water pressure and displacement of the rock mass,was designed according to the hydrogeological condition of Heimifeng pumped storage power station.With the assumption of radial water flow pattern in the rock mass during the HPPT,a theoretical formula was presented to estimate the coefficient of permeability of the rock mass using water pressures in injection and measuring boreholes.The variation in permeability of the rock mass with the injected water pressure was studied according to the suggested formula.By fitting the relationship between the coefficient of permeability and the injected water pressure,a mathematical expression was obtained and used in the numerical simulations.For a better understanding of the relationship between the pore water pressure and the displacement of the rock mass,a 3D numerical method based on a coupled hydro-mechanical theory was employed to simulate the response of the rock mass during the test.By comparison of the calculated and measured data of pore water pressure and displacement,the deformation behaviors of the rock mass were analyzed.It is shown that the variation of displacement in the fractured rock mass is caused by water flow passing through it under high water pressure,and the rock deformation during the test could be calculated by using the coupled hydro-mechanical model.
基金Projects(52078031,U 2034204)supported by the National Natural Science Foundation of China。
文摘Within the multi-barrier system for high-level waste disposal,the technological gap formed by combined buffer material block becomes the weak part of buffer layer.In this paper,Gaomiaozi bentonite buffer material with technological gap was studied,the heat transfer induced by liquid water flow and water vapor was embedded into the energy conservation equation.Based on the Barcelona basic model,the coupled thermo-hydro-mechanical model of unsaturated bentonite was established by analyzing the swelling process of bentonite block and the compression process of joint material.The China-Mock-up test was adopted to compare the numerical calculation results with the test results so as to verify the rationality of the proposed model.On this basis,the effect of joint self-healing on dry density,thermal conductivity and permeability coefficient of buffer material was further analyzed.The results show that,with bentonite hydrating and swelling,the joint material gradually increases in dry density,and exhibits comparatively uniform hydraulic and thermal conductivity properties as compacted bentonite block.As a result,the buffer material gradually shifts to homogenization due to the coordinated deformation.
基金The financial supports from National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Grant No.52022112)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program,Grant No.YJ20220219)。
文摘The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.
基金This study was supported by the National Natural Science Foundation of China(U22B2075,52274056,51974356).
文摘A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.
基金supported by the National Natural Science Foundation of China (Grant Nos.52125903).
文摘The interaction between multiple fractures is important in the analysis of rock fracture propagation,fracture network evolution and stability and integrity of rocks under hydro-mechanical(HM)coupling conditions.At present,modeling the mechanical behavior of multiple fractures is still challenging.Under the condition of multiple fractures,the opening,closing,sliding,propagation and penetration of fractures become more complicated.In order to simulate the HM coupling behavior of multi-fracture system,the paper presents a novel numerical scheme,including mesh reconstruction and topology generation algorithm,to efficiently and accurately represent fractures and their propagation process,and a potential function-based algorithm to address contact problem.The fracture contact algorithm does not need to set contact pairs and thus is suitable for complex contact situations from small to large deformations induced by HM loading.The topology of fracture interfaces is constructed by the dynamic adding algorithm,which makes the mesh reconstruction more rapid in the modeling of fracturing process,especially in the case of multiple fractures intersections.The numerical scheme is implemented in CASRock,a self-developed numerical code,to simulate the propagation process of rock fractures and the interaction of multiple fractures under the condition of HM coupling.To verify the suitability of the code,a series of tests were performed.The code was then applied to simulate hydraulic fracture propagation and fracture interactions caused by fluid injection.The ability of this method to study fracture propagation,multi-fracture interaction and fracture network evolution under hydro-mechanical coupling conditions is demonstrated.
基金We acknowledge the combined support from the National Natural Science Foundation of China(Grant Nos.52039007 and 42102325)Tiandi Science and Technology Co.,Ltd.(Grant No.2022-2-TD-MS012).
文摘Rock mass is a fractured porous medium usually subjected to complex geostress and fluid pressure simultaneously.Moreover,the properties of rock mass change in time and space due to mining-induced fractures.Therefore,it is always challenging to accurately measure rock mass properties.In this study,a three-dimensional(3D)microseismic(MS)data-driven damage model for jointed rock mass under hydro-mechanical coupling conditions is proposed.It is a 3D finite element model that takes seepage,damage and stress field effects into account jointly.Multiple factors(i.e.joints,water and microseismicity)are used to optimize the rock mass mechanical parameters at different scales.The model is applied in Shirengou iron mine to study the damage evolution of rock mass and assess the crown pillar stability during the transition from open-pit to underground mining.It is found that the damage pattern is mostly controlled by the structure,water and rock mass parameters.The damage pattern is evidently different from the two-dimensional result and is more consistent with the field observations.This difference is caused by the MS-derived damage acting on the rock mass.MS data are responsible for gradually correcting the damage zone,changing the direction in which it expands,and promoting it to evolve close to reality.For the crown pillar,the proposed model yields a more trustworthy safety factor.In order to guarantee the stability of the pillar,it is suggested to take waterproof and reinforcement measures in areas with a high degree of damage.
基金supported by the National Natural Science Foundation of China (No. 52272363)the Key Laboratory of Aerodynamic Noise Control (No. ANCL20200302),Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province。
文摘The technology of pantograph sinking in the cavity is generally adopted in the new generation of high-speed trains in China for aerodynamic noise reduction in this region. This study takes a high-speed train with a 4-car formation and a pantograph as the research object and compares the aerodynamic acoustic performance of two scale models, 1/8 and 1/1, using large eddy simulation and Ffowcs Williams–Hawkings integral equation. It is found that there is no direct scale similarity between their aeroacoustic performance. The 1/1 model airflow is separated at the leading edge of the panhead and reattached to the panhead, and its vortex shedding Strouhal number(St) is 0.17. However, the 1/8 model airflow is separated directly at the leading edge of the panhead, and its St is 0.13. The cavity's vortex shedding frequency is in agreement with that calculated by the Rooster empirical formula. The two scale models exhibit some similar characteristics in distribution of sound source energy, but the energy distribution of the 1/8 model is more concentrated in the middle and lower regions. The contribution rates of their middle and lower regions to the radiated noise in the two models are 27.3% and 87.2%, respectively. The peak frequencies of the radiated noise from the 1/1 model are 307 and 571 Hz. The 307 Hz is consistent with the frequency of panhead vortex shedding, and the 571 Hz is more likely to be the result of the superposition of various components. In contrast, the peak frequencies of the radiated noise from the 1/8 scale model are 280 and 1970 Hz. The 280 Hz comes from the shear layer oscillation between the cavity and the bottom frame, and the 1970 Hz is close to the frequency at which the panhead vortex sheds. This shows that the scaled model results need to be corrected before applying to the full-scale model.
基金National Natural Science Foundation of China(11572001,51478004)2021 Undergraduate Course Ideological and Political Demonstration Course-Theoretical Mechanics(108051360022XN569)2022 Great Innovation Project-Frame Bridge Structural Engineering Research(108051360022XN388)。
文摘In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12020101005 and 11975067)。
文摘Radio frequency capacitively coupled plasmas(RF CCPs)play a pivotal role in various applications in etching and deposition processes on a microscopic scale in semiconductor manufacturing.In the discharge process,the plasma series resonance(PSR)effect is easily observed in electrically asymmetric and geometrically asymmetric discharges,which could largely influence the power absorption,ionization rate,etc.In this work,the PSR effect arising from geometrically and electrically asymmetric discharge in argon-oxygen mixture gas is mainly investigated by using a plasma equivalent circuit model coupled with a global model.At relatively low pressures,as Ar content(α)increases,the inductance of the bulk is weakened,which leads to a more obvious PSR phenomenon and a higher resonance frequency(ω_(psr)).When the Ar content is fixed,varying the pressure and gap distance could also have different effects on the PSR effect.With the increase of the pressure,the PSR frequency shifts towards the higher order,but in the case of much higher pressure,the PSR oscillation would be strongly damped by frequent electron-neutral collisions.With the increase of the gap distance,the PSR frequency becomes lower.In addition,electrically asymmetric waveforms applied to a geometrically asymmetric chamber may weaken or enhance the asymmetry of the discharge and regulate the PSR effect.In this work,the Ar/O_(2) electronegative mixture gas is introduced in a capacitive discharge to study the PSR effect under geometric asymmetry effect and electrical asymmetry effect,which can provide necessary guidance in laboratory research and current applications.
文摘The objective of this paper is to develop a methodology for calibration of a discrete element grain-based model(GBM)to replicate the hydro-mechanical properties of a brittle rock measured in the laboratory,and to apply the calibrated model to simulating the formation of excavation damage zone(EDZ)around underground excavations.Firstly,a new cohesive crack model is implemented into the universal distinct element code(UDEC)to control the fracturing behaviour of materials under various loading modes.Next,a methodology for calibration of the components of the UDEC-Voronoi model is discussed.The role of connectivity of induced microcracks on increasing the permeability of laboratory-scale samples is investigated.The calibrated samples are used to investigate the influence of pore fluid pressure on weakening the drained strength of the laboratory-scale rock.The validity of the Terzaghi’s effective stress law for the drained peak strength of low-porosity rock is tested by performing a series of biaxial compression test simulations.Finally,the evolution of damage and pore pressure around two unsupported circular tunnels in crystalline granitic rock is studied.
基金funded by the Iran National Science Foundation(INSF)(Grant No.96001589).
文摘Mechanical failure of materials adjacent to the production cavity and material disaggregation caused by fluid drag are considered as the most important parameters that affect sand production.In light of such factors,the coupling of two mechanisms-mechanical instability and hydrodynamic erosion-is indispensable in order to model this phenomenon successfully.This paper examines the applicability of a coupled hydro-mechanical erosion criterion for simulating sand production using the finite element method.The porous medium was considered fully saturated.The onset of sanding and production of sand were predicted by coupling mechanical failure and subsequent erosion of the grain particles utilizing a sanding model.To consider the erosion process,the Papamichos and Stavropoulou(1998)’s sand erosion criterion was incorporated into the finite element code.Arbitrary Lagrangian-Eulerian(ALE)adaptive mesh approach was used to account for large amounts of erosive material loss.Besides,in order to address the problem of severe mesh distortion,the“mesh mapping technique”was employed.Sand production in a horizontal wellbore and in a field case was simulated to demonstrate capabilities of the proposed model.In addition,principal parameters affecting sand production,including in situ stresses,cohesion,perforation orientation,and drawdown were examined.The results indicated the efficiency of the model used in evaluation of sanding in the field.Parametric studies indicated that in situ stresses and formation cohesion could be considered as dominant factors affecting the amount of sand production.
基金the financial support from the Laboratory of Coal Resources and Safe Mining(China University of Mining and Technology,Beijing)(Grant No.SKLCRSM16KFC01)。
文摘Sandstone“injectite”intrusions are generally developed by the fluidization of weakly cemented sandstones and their subsequent injection into fractured reservoirs.In this work,a continuum coupled hydromechanical model TOUGH-FLAC3D is applied to simulate the discrete fracture network in large-scale sand injectite complexes.A sand production constitutive model is incorporated to consider the formation of sand through plastic deformation and its influence on evolution of fracture permeability.Overpressures in the fluidized sand slurry drives the injection with sand dikes intruded upwards,typically into previously low permeability“tight”mudstone formations.The contrast in poroelastic properties of the underlying weak sandstone and overlying injectite receptor directly affects the evolution of fracture aperture both during and after intrusion.Fluid drainage into the unconsolidated matrix may reduce the extent of fracture aperture growth,through the formation of shear bands.The results of this work have broad implications related to the emplacement of sandstone intrusions and subsequent hydrocarbon accumulation,maturation and then production.
基金Supported by the French National Radioactive Waste Management Agency
文摘Callovo-Oxfordian (COx) argillite obtained from the excavation of high-level radioactive waste geological disposal has been evaluated as an alternative sealing/backfill material in France. This paper presents an experimental investigation into the hydro-mechanical behaviour of compacted crushed COx argillite. A series of oedorneter compressive tests including various loading-unloading cycles were conducted on COx argillite powders at different initial water contents. After reaching the desired dry density (2.0 Mg/m^3), the vertical stress was reduced to different levels (7.0 and 0.5 MPa) and the compacted sample was then flooded under constant volume conditions while measuring the changes in the vertical stress. It was found that the initial water content significantly affects the compressive behaviour. The measured saturated hydraulic conductivity is less than 1×10^-10m/s.
基金the German Research Foundation(DFG)for the financial support(Grant No.SCHA 675/17-1)。
文摘A methodology for identifying and calibrating the material parameters for a coupled hydro-mechanical problem is presented in this pape r.For validation purpose,a laboratory-based water infiltration test was numerically simulated using finite element method(FEM).The test was conducted using a self-designed column-type experimental device,which mimicked the wetting process of a candidate backfill material in a nuclear waste repository.The real-time measurements of key state variables(e.g.water content,relative humidity,temperature,and total stresses)were performed with the monitoring sensors along the height of cylindrical soil sample.For numerical simulation,the modified Barcelona Basic Model(BBM)along with soil-water retention model for compacted bentonite was used.It shows that the identified model parameters successfully captured the moisture migration process under an applied hydraulic gradient in a bentonite-based compacted soil sample.A comparison between the measured and predicted values of total stresses both in axial and lateral directions along with other state variables revealed that heterogeneous moisture content was distributed along the hydration-path,resulting in non-uniform stress-deformation characteristics of soil.
基金the support from the University Transportation Center for Underground Transportation Infrastructure at the Colorado School of Mines for partially funding this research under Grant No. 69A3551747118 of the Fixing America's Surface Transportation Act (FAST Act) of U.S. DoT FY2016
文摘Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit(ADE)scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in nonuniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourthorder finite difference(FD) approximation to the spatial derivatives of the axisymmetric fluid-diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps,giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua(FLAC). This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%-50% that of FLAC’s basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%-1.8%.
基金supported by the National Natural Science Foundation of China (41941018)supported by Beijing Natural Science Foundation (8212033)+1 种基金supported by the Fundamental Research Funds for the Central Universities (2021YJSLI13,2021JCCXLJ05)supported by Innovation Fund Research Project (SKLGDUEK202221).
文摘High geo-temperature is one of the inevitable geological disasters in deep engineering such as resource extraction,space development,and energy utilization.One of the key issues is to understand the mechanical properties and failure mechanism of high-temperature rock disturbed by low-temperature airflow after excavation.Therefore,.the experimental and numerical investigation were carried out to study the impact of cooling rate on mechanical properties and failure mechanism of high temperature sandstone.First,uniaxial compression experiments of high temperature sandstone at different real-time cooling rates were carried out to study the mechanical properties and failure modes.The experimental results indicate that the cooling rate has a significant effect on the mechanical properties and failure modes of sandstone.The peak strain,peak stress,and elastic modulus decrease with an increase in cooling rate,and the fragmentation degree after failure increases gradually.Moreover,the equivalent numerical model of heterogeneous sandstone was established using particle flow code(PFC)to reveal the failure mechanism.The results indicate that the sandstone is dominated by intragrain failure in the cooling stage,the number of microcracks is exponentially related to the cooling rate,and the higher the cooling rate,the more cracks are concentrated in the exterior region.Under axial loading,the tensile stress is mostly distributed along the radial direction,and the damage in the cooling stage is mostly due to the fracture of the radial bond.In addition,axial loading,temperature gradient and thermal stress mismatch between adjacent minerals are the main reasons for the damage of sandstone in the cooling stage.Moreover,the excessive temperature gradient in the exterior region of the sandstone is the main reason for the damage concentration in this region.
基金The project supported by the National Natural Science Foundation of China (10372044)the Cheung Kong Scholars Programme
文摘Coupled effects of mechanical and electronic behavior in single walled carbon nanotubes are investigated by using quantum mechanics and quantum molecular dynamics.It is found that external applied electric fields can cause charge polarization and significant geometric deformation in metallic and semi-metallic carbon nanotubes.The electric induced axial tension ratio can be up to 10% in the armchair tube and 8.5% in the zigzag tube.Pure external applied load has little effect on charge distribution,but indeed influences the energy gap.Tensile load leads to a narrower energy gap and compressive load increases the gap.When the CNT is tensioned under an external electric field,the effect of mechanical load on the electronic structures of the CNT becomes significant,and the applied electric field may reduce the critical mechanical tension load remarkably.Size effects are also discussed.
基金supported by the National Key Research and Development Project (Grant No. SQ2017YFSF060085)the National Natural Science Foundation of China (NSFC)(Grant Nos. 41472257, 41530638, and 41372302)+1 种基金the Special Fund Key Project of Applied Science and Technology Research and Development in Guangdong (Grant No. 2016B010124007)the Special Support Program for High Level Talents in Guangdong (Grant No. 2015TQ01Z344)
文摘The deformation and failure of soft rock affected by hydro-mechanical(HM) effect are one of the most concerns in geotechnical engineering, which are basically attributed to the grain sliding of soft rock. This study tried to develop a dissolution-diffusion sliding model for the typical red bed soft rock in South China. Based on hydration film, mineral dissolution and diffusion theory, and geochemical thermodynamics, a dissolution-diffusion sliding model with the HM effect was established to account for the sliding rate. Combined with the digital image processing technology, the relationship between the grain size of soft rock and the amplitude of sliding surface was presented. An equation for the strain rate of soft rocks under steady state was also derived. The reliability of the dissolution-diffusion sliding model was verified by triaxial creep tests on the soft rock with the HM coupling effect and by the relationship between the inversion average disjoining pressure and the average thickness of the hydration film. The results showed that the sliding rate of the soft rock grains was affected significantly by the waviness of sliding surface, the shear stress, and the average thickness of hydration film. The average grain size is essential for controlling the steady-state creep rate of soft rock. This study provides a new idea for investigating the deformation and failure of soft rock with the HM effect.
基金Projects(51009053,51079039)supported by the National Natural Science Foundation of ChinaProject(20100094120004)supported by the Doctoral Program of Higher Education of China
文摘The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between clay core-wall and concrete cut-offwall,so the hydro-mechanical coupling mechanisms on the joint under high stress,high hydraulic gradient,and large shear deformation are of great importance for the evaluation of dam safety.The hydro-mechanical coupling characteristics of the joint of the highly plastic clay and the concrete cut-off wall in a high earth and rockfill dam in China were studied by using a newly designed soil-structure contact erosion apparatus.The experimental results indicate that:1) Shear failure on the joint is due to the hydro-mechanical coupling effect of stress and seepage failure.The seepage failure will induce the final shear failure when the ratio of deviatoric stress to confining pressure is within 1.0-1.2; 2) A negative exponential permeability empirical model for the joint denoted by a newly defined principal stress function,which considers the coupling effect of confining pressure and axial pressure on the permeability,is established based on hydro-mechanical coupling experiments.3) The variation of the settlement before and after seepage failure is very different.The settlement before seepage failure changes very slowly,while it increases significantly after the seepage failure.4) The stress-strain relationship is of a strain softening type.5) Flow along the joint still follows Darcian flow rule.The results will provide an important theoretical basis for the further evaluation on the safety of the high earth and rockfill dam.
基金Projects(2021YFF0502100,2021YFB2600900)supported by the National Key R&D Program of ChinaProjects(52022085,52278461)supported by the National Natural Science Foundation of ChinaProject(22CXTD0051)supported by Sichuan Youth Science and Technology Innovation Team,China。
文摘The sunny-shady slopes effect is a phenomenon that impacts the temperature distribution of high-speed railway subgrades,resulting in uneven frost heaving deformation on the subgrade surface,which in turn causes static irregularity in the slab track.Based on the hydraulics theory,a thermal-hydro-mechanical(THM)coupled model of frozen soil is established and verified.We explore the process and characteristics of the temperature field and deformation of soil during the freezing process of high-speed railway subgrades and analyze the track irregularity variation law of China Railway Track SystemⅢslab tracks under uneven frost heaving deformation.The results show that,because the left and right slopes of high-speed railway subgrade are exposed to different amounts of solar radiation,which is the key factor causing uneven frost heaving of subgrade.Different strike angles cause changes in temperature of the subgrade’s upper part and the frost heaving amount on the surface,leading to differences in the deformation of the slab track structure:Increased strike angle weakens the rail level irregularity of the down line and marginally increases the rail level irregularity of the up line,and these become consistent in north-south directions.Therefore,when selecting railway lines in seasonal frozen areas,the west-east direction should be avoided to prevent the extremes in sunny-shady slopes effect on subgrades.