期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
A Further Study on an Extended Nonlinear Ocean-Atmosphere Coupled Hydrodynamic Characteristic System and the Abrupt Feature of ENSO Events
1
作者 钟青 纪立人 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1992年第2期131-146,共16页
An extended ocean-atmosphere coupled characteristic system including thermodynamic physical processes in ocean mixed layer is formulated in order to describe SST explicitly and remove possible limitation of ocean-atmo... An extended ocean-atmosphere coupled characteristic system including thermodynamic physical processes in ocean mixed layer is formulated in order to describe SST explicitly and remove possible limitation of ocean-atmosphere coupling assumption in hydrodynamic ENSO models. It is revealed that there is a kind of abrupt nonlinear characteristic behaviour, which relates to rapid onset and intermittency of El Nino events, on the second order slow time scale due to the nonlinear interaction between a linear unstable low-frequency primary eigen component of ocean-atmosphere coupled Kelvin wave and its higher order harmonic components under a strong ocean-atmosphere coupling background. And, on the other hand, there is a kind of finite amplitude nonlinear characteristic behaviour on the second order slow time scale due to the nonlinear interaction between the linear unstable primary eigen component and its higher order harmonic components under a weak ocean-atmosphere coupling background in this model system. 展开更多
关键词 A Further Study on an Extended Nonlinear Ocean-Atmosphere coupled hydrodynamic Characteristic System and the Abrupt Feature of ENSO Events Nino ENSO
下载PDF
Hydrodynamic Analysis of a Semi-submersible Wind-Tidal Combined Power Generation Device 被引量:2
2
作者 Yong Ma Chao Hu +2 位作者 Binghao Zhou Lei Li Youwei Kang 《Journal of Marine Science and Application》 CSCD 2019年第1期72-81,共10页
Energy shortages and environmental pollution are becoming increasingly severe globally. The exploitation and utilization of renewable energy have become an effective way to alleviate these problems. To improve power p... Energy shortages and environmental pollution are becoming increasingly severe globally. The exploitation and utilization of renewable energy have become an effective way to alleviate these problems. To improve power production capacity, power output quality, and cost effectiveness, comprehensive marine energy utilization has become an inevitable trend in marine energy development. Based on a semi-submersible wind-tidal combined power generation device,a three-dimensional frequency domain potential flow theory is used to study the hydrodynamic performance of such a device. For this study, the RAOs and hydrodynamic coefficients of the floating carrier platform to the regular wave were obtained. The influence of the tidal turbine on the platform in terms of frequency domain was considered as added mass and damping. The direct load of the tidal turbine was obtained by CFX.FORTRAN software was used for the second development of adaptive query workload aware software, which can include the external force. The motion response of the platform to the irregular wave and the tension of the mooring line were calculated under the limiting condition(one mooring line breakage). The results showed that the motion response of the carrier to the surge and sway direction is more intense, but the swing amplitude is within the acceptable range. Even in the worst case scenario, the balance position of the platform was still in the positioning range, which met the requirements of the working sea area. The safety factor of the mooring line tension also complied with the requirements of the design specification. Therefore, it was found that the hydrodynamic performance and motion responses of a semi-submersible wind-tidal combined power generation device can meet the power generation requirements under all design conditions, and the device presents a reliable power generation system. 展开更多
关键词 Power generation device Coupling hydrodynamic analysis AQWA Mooring line tension Motion response hydrodynamic analysis Power generation device
下载PDF
Dynamic Coupling Analysis of Semisubmersible Platform Float-over Method for Docking Case
3
作者 DING Hongyan QIN Licheng +2 位作者 ZHANG Puyang SONG Zhengrong XIE Weiwei 《Journal of Ocean University of China》 CAS CSCD 2024年第2期345-357,共13页
In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible plat... In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible platform was performed.Relevant hydrodynamic parameters were obtained using the retardation function method of three-dimensional frequency-domain potential flow theory.The results of the hydrodynamic analysis were highly consistent with the test findings,verifying the accuracy of the multifloating hydrodynamic coupling analysis,and key hydrodynamic parameters were solved for different water depths and the coupling effect.According to the obtained results,the hydrodynamic influence was the largest in shallow waters when the coupling effect was considered.Furthermore,the coupled motion equation combined with viscous damping,fender system,and mooring system was established,and the hydrodynamics,floating body motion,and dynamic response of the fender system were analyzed.Motion analysis revealed good agreement among the surge,sway,and yaw motions of the two floating bodies.However,when the wave period reached 10 s,the motion of the two floating bodies showed severe shock,and a relative motion was also observed.Therefore,excessive constraints should be added between the two floating bodies during construction to ensure construction safety.The numerical analysis and model test results of the semisubmersible platform and HYSY 229 barge at a water depth of 42 m and sea conditions of 0°,45°,and 90° were in good agreement,and the error was less than 5%.The maximum movement of the HYSY 229 barge reached 2.61 m in the sway direction,whereas that of the semisubmersible platform was 2.11 m.During construction,excessive constraints should be added between the two floating bodies to limit their relative movement and ensure construction safety. 展开更多
关键词 float-over method semisubmersible platform coupling hydrodynamic fender system time-domain analysis
下载PDF
Urban Flood Mitigation Strategies with Coupled Gray-Green Measures:A Case Study in Guangzhou City,China
4
作者 Jiayue Li Jiajun Zeng +1 位作者 Guoru Huang Wenjie Chen 《International Journal of Disaster Risk Science》 SCIE CSCD 2024年第3期467-479,共13页
The integration of gray and green infrastructure has proven to be a feasible approach for managing stormwater in established urban areas.However,evaluating the specific contributions of such coupled strategies is chal... The integration of gray and green infrastructure has proven to be a feasible approach for managing stormwater in established urban areas.However,evaluating the specific contributions of such coupled strategies is challenging.This study introduced a novel integrated hydrological-hydrodynamic model that takes into account the layout of low-impact development(LID)facilities along with pipeline alignment and rehabilitation.Reliable results from modeling were used to assess the individual contribution of LID and improved drainage facilities to urban flooding mitigation.We selected a natural island in Guangzhou City,China,as the study site.The results indicate that combining three LID measures,namely green roofs,sunken green spaces,and permeable pavements,can reduce total runoff by 41.7%to 25.89%for rainfall recurrence periods ranging from 1year to 100 years,and decrease the volume of nodal overflow by nearly half during rainfall events of less than 10-year return period.By integrating LID measures with the upgraded gray infrastructure,the regional pipeline overloading condition is substantially alleviated,resulting in a significant improvement in pipeline system resilience.For urban flooding control,it is recommended to integrate sufficient green space and avoid pipe-laying structural issues during urban planning and construction.The findings may assist stakeholders in developing strategies to best utilize gray and green infrastructure in mitigating the negative eff ects of urban flooding. 展开更多
关键词 coupled hydrodynamic model.Gray-green approach Guangzhou City LID.Pipe renovation Urban inundation
原文传递
Research of air-cushion isolation effects on high arch dam reservoir 被引量:4
5
作者 Shao-Jie Zhang Jiang Chen +1 位作者 Yuan-Ze Zhang Hao-Wu Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第5期675-686,共12页
A three-dimensional (3D) finite element model of air-cushion isolated arch dam is presented with the nonlinear gas-liquid-solid multi-field dynamic coupling effect taken into account.In this model,the displacement f... A three-dimensional (3D) finite element model of air-cushion isolated arch dam is presented with the nonlinear gas-liquid-solid multi-field dynamic coupling effect taken into account.In this model,the displacement formulation in Lagrange method,pressure formulation in Euler method,nonlinear contact model based on Coulomb friction law are applied to the air-cushion,reservoir and contraction joint domain,respectively.The dynamic response of Jinping I arch dam with a height of 305 m is analyzed using the seismic records of the Wenchuan Earthquake in 2008.Numerical results show that the air-cushion isolation reduces significantly the hydrodynamic pressure as well as the opening width for the contraction joints of high arch dam. 展开更多
关键词 Air-cushion · Gas-liquid-solid multi-field coupling · Contraction (transverse) joint · hydrodynamic pressure · Wenchuan Earthquake
下载PDF
Natural convection flow of a couple stress fluid between two vertical parallel plates with Hall and ion-slip effects 被引量:1
6
作者 D.Srinivasacharya K.Kaladhar 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期41-50,共10页
The Hall and ion-slip effects on fully developed electrically conducting couple stress fluid flow between vertical parallel plates in the presence of a temperature dependent heat source are investigated. The governing... The Hall and ion-slip effects on fully developed electrically conducting couple stress fluid flow between vertical parallel plates in the presence of a temperature dependent heat source are investigated. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using the homotopy analysis method (HAM). The effects of the magnetic parameter, Hall parameter, ion-slip parameter and couple stress fluid parameter on velocity and temperature are discussed and shown graphically 展开更多
关键词 Free convection Couple stress fluid Magneto- hydrodynamics Hall and ion-slip effects - HAM
下载PDF
Dissolution Precipitation Wave Structure of Hydrothermal Ore Zoning
7
作者 Yu Chongwen(Faculty of Earth Sciences, China University of Geosciences,Wuhan 430074)Jiang Yaosong Xiao Zhengyu(Department of Computer Science,China University of Geosciences, Beijing 100083) 《Journal of Earth Science》 SCIE CAS CSCD 1995年第1期85-96,共12页
Hydrothermal ore zoning is a transport-reaction problem in which infiltration is the principal Prcness of transport and dissolution/Precipitation is the Principal process of chemical reactions.Neglecting diffusion an... Hydrothermal ore zoning is a transport-reaction problem in which infiltration is the principal Prcness of transport and dissolution/Precipitation is the Principal process of chemical reactions.Neglecting diffusion and ion exchange/adsorption would not affect the basic attributes of hydrothermal ore zoning. Hydrothermal ore zoning belongs essentially to infiltration metasomatic zoning, it results from the formation and propagation of dissolution/precipitation waves through Permeable media. The authors apply the theory of coupled infiltration and dissolution/precipitation reactions in Physicochemical hydrodynamics to studying the structural characteristics of dissolution/precipitation waves, and apply furthermore the coherence principle in dynamic theory of multicomponent coupled systems to revealing the dynamic mechanisms of their formation. The results of investigation verify and develop . C. 's theory of infiltration metasomatic zoning,on the one hand, raising it from the qualitative, equilibrium thermodynamic basis to the quantitative dynamic level;on the other hand, and more importantly, applying theories of Physicochemical hydrodynamics and dynamics of multicomponent coupled systems to bringing to light the dynamic mechanisms of formation of the structure of hydrothermal ore zoning, and advancing a theory of hydrothermal ore zoning, putting forward new ideas on the nature of the problem of hydrothermal ore zoning, the essence of hydrothermal ore zoning and the structural characteristics and mechanisms of formation of hydrothermal ore zoning. 展开更多
关键词 hydrothermal ore zoning transport-reaction infiltration metasomatism dissolution/ Precipitation waves Physicochemical hydrodynamics theory of coupled infiltration and dissolution/precipitation reactions dynamic theory of multicomponent coupled systems c
下载PDF
NUMERICAL INVESTIGATION ON THE HYDRODYNAMIC PERFORMANCES OF A NEW SPAR CONCEPT 被引量:13
8
作者 ZHANG Fan YANG Jian-min LI Run-pei CHEN Gang 《Journal of Hydrodynamics》 SCIE EI CSCD 2007年第4期473-481,共9页
Recently, the spar platform concept develops quickly in the offshore oil and gas exploitations, especially in deep and ultra-deep water, owing to its benign motion performance, excellent stability and adaptation to wi... Recently, the spar platform concept develops quickly in the offshore oil and gas exploitations, especially in deep and ultra-deep water, owing to its benign motion performance, excellent stability and adaptation to wide range of water depth. Many new spar concepts have been put forward with the purpose of reducing fabrication difficulty and cost, while meeting the requirements of exploitation in the meantime Based on the aims mentioned above, a new spar concept was presented in this article and its hydrodynamics both in operating and survival conditions was studied by means of numerical simulation. Basic model tests were also conducted to calibrate the numerical approach. Following aspects are highlighted: (1) new spar concept, (2) global performance of the spar concept and (3) mooring line analysis. 展开更多
关键词 spar platform time-domain coupled analysis hydrodynamic performances
原文传递
Numerical techniques for coupling hydrodynamic problems in ship and ocean engineering 被引量:3
9
作者 Xiao-song Zhang Jian-hua Wang De-cheng Wan 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第2期212-233,共22页
Most hydrodynamic problems in ship and ocean engineering are complex and highly coupled.Under the trend of intelligent and digital design for ships and ocean engineering structures,comprehensive performance evaluation... Most hydrodynamic problems in ship and ocean engineering are complex and highly coupled.Under the trend of intelligent and digital design for ships and ocean engineering structures,comprehensive performance evaluation and optimization are of vital importance during design.In this process,various coupling effects need to be accurately predicted.With the significant progress of computational fluid dynamics(CFD),many advanced numerical models were proposed to simulate the complex coupling hydrodynamic problems in ship and ocean engineering field.In this paper,five key coupling hydrodynamic problems are introduced,which are hull-propeller-rudder coupling,wave-floating structure coupling,aerodynamic-hydrodynamic coupling,fluid structure coupling and fluid-noise coupling,respectively.The paper focuses on the numerical simulation techniques corresponding to each coupling problem,including the theories and the applications.Future directions and conclusions are provided finally. 展开更多
关键词 Coupling hydrodynamic problems numerical techniques ship and ocean engineering
原文传递
A Moving Mesh Method for Kinetic/Hydrodynamic Coupling
10
作者 Zhicheng Hu Heyu Wang 《Advances in Applied Mathematics and Mechanics》 SCIE 2012年第6期685-702,共18页
This paper deals with the application of a moving mesh method for kinetic/hydrodynamic coupling model in two dimensions.With some criteria,the domain is dynamically decomposed into three parts:kinetic regions where fl... This paper deals with the application of a moving mesh method for kinetic/hydrodynamic coupling model in two dimensions.With some criteria,the domain is dynamically decomposed into three parts:kinetic regions where fluids are far from equilibrium,hydrodynamic regions where fluids are near thermodynamical equilibrium and buffer regions which are used as a smooth transition.The Boltzmann-BGK equation is solved in kinetic regions,while Euler equations in hydrodynamic regions and both equations in buffer regions.By a well defined monitor function,our moving mesh method smoothly concentrate the mesh grids to the regions containing rapid variation of the solutions.In each moving mesh step,the solutions are conservatively updated to the new mesh and the cut-off function is rebuilt first to consist with the region decomposition after the mesh motion.In such a framework,the evolution of the hybrid model and the moving mesh procedure can be implemented independently,therefore keep the advantages of both approaches.Numerical examples are presented to demonstrate the efficiency of the method. 展开更多
关键词 Moving mesh method kinetic/hydrodynamic coupling the Boltzmann-BGK equation
原文传递
Active Nematodynamics on Curved Surfaces–The Influence of Geometric Forces on Motion Patterns of Topological Defects
11
作者 Michael Nestler Axel Voigt 《Communications in Computational Physics》 SCIE 2022年第3期947-965,共19页
We derive and numerically solve a surface active nematodynamics model.We validate the numerical approach on a sphere and analyse the influence of hydro-dynamics on the oscillatory motion of topological defects.For ell... We derive and numerically solve a surface active nematodynamics model.We validate the numerical approach on a sphere and analyse the influence of hydro-dynamics on the oscillatory motion of topological defects.For ellipsoidal surfaces the influence of geometric forces on these motion patterns is addressed by taking into ac-count the effects of intrinsic as well as extrinsic curvature contributions.The numerical experiments demonstrate the stronger coupling with geometric properties if extrinsic curvature contributions are present and provide a possibility to tuneflow and defect motion by surface properties. 展开更多
关键词 Topological active matter defect dynamics hydrodynamic coupling surfacefinite elements
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部