期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review 被引量:70
1
作者 Xibing Li Fengqiang Gong +5 位作者 Ming Tao Longjun Dong Kun Du Chunde Ma Zilong Zhou Tubing Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期767-782,共16页
Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the... Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward.In this study,new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced.Two types of coupled loading modes,i.e.'critical static stress + slight disturbance' and 'elastic static stress + impact disturbance',are proposed,and associated test devices are developed.Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory,and the rockburst mechanism and related criteria are demonstrated.The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold,and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion.Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density.In addition,we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass,which can efficiently and accurately locate the rock failure in hard rock mines.Also,a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced. 展开更多
关键词 Deep rock mechanics coupled static-dynamic loading ROCKBURST Discontinuous rock failure Microseismic source location Continuous mining
下载PDF
Dynamic tensile behaviour and crack propagation of coal under coupled static-dynamic loading 被引量:9
2
作者 Xianjie Hao Weisheng Du +4 位作者 Yixin Zhao Zhuowen Sun Qian Zhang Shaohua Wang Haiqing Qiao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第5期659-668,共10页
The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading test... The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading tests are conducted on Brazilian disc(BD)coal specimens using a modified split Hopkinson pressure bar(SHPB).The effects of the static axial pre-stress and loading rate on the dynamic tensile strength and crack propagation characteristics of BD coal specimens are studied.The average dynamic indirect tensile strength of coal specimens increases first and then decreases with the static axial pre-stress increasing.When no static axial pre-stress is applied,or the static axial pre-stress is 30%of the static tensile strength,the dynamic indirect tensile strength of coal specimens shows an increase trend as the loading rate increases.When the static axial pre-stress is 60%of the static tensile strength,the dynamic indirect tensile strength shows a fluctuant trend as the loading rate increases.According to the crack propagation process of coal specimens recorded by high-speed camera,the impact velocity influences the mode of crack propagation,while the static axial pre-stress influences the direction of crack propagation.The failure of coal specimens is a coupled tensile-shear failure under high impact velocity.When there is no static axial pre-stress,tensile cracks occur in the vertical loading direction.When the static axial pre-stress is applied,the number of cracks perpendicular to the loading direction decreases,and more cracks occur in the parallel loading direction. 展开更多
关键词 COAL coupled static-dynamic loading SHPB Dynamic fracture behaviour Crack propagation
下载PDF
Mechanical properties of rock under coupled static-dynamic loads 被引量:8
3
作者 Xibing Li Zilong Zhou +4 位作者 Fujun Zhao Yujun Zuo Chunde Ma Zhouyuan Ye Liang Hong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2009年第1期41-47,共7页
Rock drilling machine,INSTRON testing system,and SHPB device are updated to investigate the characteristics of rocks at great depth,with high loads from overburden,tectonic stresses and dynamic impacts due to blasting... Rock drilling machine,INSTRON testing system,and SHPB device are updated to investigate the characteristics of rocks at great depth,with high loads from overburden,tectonic stresses and dynamic impacts due to blasting and boring.It is verified that these testing systems can be used to study the mechanical properties of rock material under coupled static and dynamic loading condition and give useful guidance for the deep mining and underground cavern excavation.Various tests to determine the rock strength,fragmentation behavior,and energy absorption were conducted using the updated testing systems.It is shown that under coupled static-dynamic loads,if the axial prestress is lower than its elastic limit,the rock strength is higher than the individual static or dynamic strength.At the same axial prestress,rock strength under coupled loads rises with the increasing strain rates.Under coupled static and dynamic loads,rock is observed to fail with tensile mode.While shear failure may exist if axial prestress is high enough.In addition,it is shown that the percentage of small particles increases with the increasing axial prestress and impact load based on the analysis of the particle-size distribution of fragments.It is also suggested that the energy absorption ratio of a specimen varies with coupled loads,and the maximum energy absorption ratio for a rock can be obtained with an appropriate combination of static and dynamic loads. 展开更多
关键词 rock dynamic testing system coupled static-dynamic loads STRENGTH FRAGMENTATION energy absorption
下载PDF
ANALYSIS OF SHAKEDOWN OF FG BREE PLATE SUBJECTED TO COUPLED THERMAL-MECHANICAL LOADINGS
4
作者 Xianghe Peng Ning Hu +1 位作者 Hengwei Zheng Cuirong Fang 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第2期95-108,共14页
The static and kinematic shakedown of a functionally graded (FG) Bree plate is analyzed. The plate is subjected to coupled constant mechanical load and cyclically varying temperature. The material is assumed linearl... The static and kinematic shakedown of a functionally graded (FG) Bree plate is analyzed. The plate is subjected to coupled constant mechanical load and cyclically varying temperature. The material is assumed linearly elastic and nonlinear isotropic hardening with elastic modulus,yield strength and the thermal expansion coeffcient varying exponentially through the thickness of the plate. The boundaries between the shakedown area and the areas of elasticity,incremental collapse and reversed plasticity are determined,respectively. The shakedown of the counterpart made of homogeneous material with average material properties is also analyzed. The comparison between the results obtained in the two cases exhibits distinct qualitative and quantitative difference,indicating the importance of shakedown analysis for FG structures. Since FG structures are usually used in the cases where severe coupled cyclic thermal and mechanical loadings are applied,the approach developed and the results obtained are significant for the analysis and design of such kind of structures. 展开更多
关键词 functionally graded material the Bree plate coupled thermal-mechanical loading shakedown
下载PDF
Stress Path Analysis of Deep-Sea Sediments Under the Compression-Shear Coupling Load of Crawler Collectors
5
作者 ZHANG Ning MA Ning +2 位作者 YIN Shiyang CHEN Xuguang SONG Yuheng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第1期65-74,共10页
The mechanical properties of deep-sea sediments during the driving process of crawler collectors are essential factors in the design of mining systems.In this study,a crawler load is divided into a normal compression ... The mechanical properties of deep-sea sediments during the driving process of crawler collectors are essential factors in the design of mining systems.In this study,a crawler load is divided into a normal compression load and a horizontal shear load.Then,the internal stress state of sedimentary soil is examined through a theoretical calculation and finite element numerical simulation.Finally,the driving of crawlers is simulated by changing the relative spatial position between the load and stress unit,obtaining the stress path of the soil unit.Based on the calculation results,the effect of the horizontal shear load on the soil stress response is analyzed at different depths,and the spatial variation law of the soil stress path is examined.The results demonstrate that the horizontal shear load has a significant effect on the rotation of the principal stress,and the reverse rotation of the principal stress axis becomes obvious with the increase in the burial depth.The stress path curve of the soil is different at various depths.The spatial variation rule of the stress path of the shallow soil is complex,whereas the stress path curve of the deep soil tends to shrink as the depth increases.The stress path of the corresponding depth should be selected according to the actual research purpose and applied to the laboratory test. 展开更多
关键词 deep-sea sediment crawler collector compression-shear coupling load stress path principal stress axis direction
下载PDF
Dynamic mechanical characteristics of deep Jinping marble in complex stress environments
6
作者 Chendi Lou Heping Xie +6 位作者 Ru Zhang Hai Ren Hao Luo Kun Xiao Yuan Peng Qiang Tan Li Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期630-644,共15页
To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain ... To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth. 展开更多
关键词 Rock mechanics Split-Hopkinson pressure bar coupled static‒dynamic loading Different depths Holmquist-Johnson-Cook(HJC)model
下载PDF
NMR-based damage characterisation of backfill material in host rock under dynamic loading 被引量:17
7
作者 Binglei Li Jiquan Lan +2 位作者 Guangyao Si Guopeng Lin Liuqing Hu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期329-335,共7页
It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution o... It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution of backfilled stopes is critical to maintain the long-term stope stability and ensure safe mining activities. This paper aims to study the damage evolution of the backfill material and its host rock behaviour under three-dimensional(3D) dynamic loading. Using a true-triaxial testing machine, multiple samples of backfill material enclosed by country rock were fabricated and tested under various dynamic loadings with different true-triaxial confining stress conditions. In addition, the nuclear magnetic resonance(NMR) measurement was conducted on the samples before and after exerting static and dynamic loading to obtain their porosity distribution changes. The experiment results suggested that with the increase of the dynamic loading, the porosity of the backfill sample goes through a two-stage process,which shows a slightly linear decrease and then followed by an exponential increase. The research findings can help understand the damage mechanism and fracture development of backfilled stopes and its host rock in deep underground mines, which are constantly subject to the combination of 3D static confining stress and dynamic loading. 展开更多
关键词 Dynamic loading Backfill-country rock system True triaxial test coupled static and dynamic loads Nuclear magnetic resonance(NMR) Damage evolution
下载PDF
Experimental study on the irreversible displacement evolution and energy dissipation characteristics of disturbance instability of regular joints
8
作者 Jianan Yang Pengxian Fan +2 位作者 Mingyang Wang Jie Li Lu Dong 《Deep Underground Science and Engineering》 2023年第1期20-36,共17页
To investigate the disturbance-induced shear instability mechanism of structural catastrophe in the deep rock mass,MTS 815 material testing machine was used to carry out quasi-static loading tests and disturbance shea... To investigate the disturbance-induced shear instability mechanism of structural catastrophe in the deep rock mass,MTS 815 material testing machine was used to carry out quasi-static loading tests and disturbance shear tests on symmetrical regular dentate joints of two materials at three undulation angles under specific initial static stress,disturbance frequency,and peak value.The test results indicate that:(i)the total ultimate instability displacement is only related to the intrinsic properties of the joints but not to the initial static stress and disturbance parameters;(ii)the cumulative irreversible displacement required for the disturbance instability conforms to the logistic inverse function relationship with the number of disturbances,displaying the variation trend of“rapid increase in the front,stable in the middle,and sudden increase in the rear”;(iii)the accumulation of plastic deformation energy is consistent with the evolution law of irreversible displacement of joints and the overall proportion of hysteretic energy is not large;(iv)the dissipated energy required for the instability of each group of joints is basically the same under various disturbance conditions,and this energy is mainly controlled by the initial shear stress and has no connection with the disturbance parameters.The stability of the total disturbance deformation and the disturbance energy law of the joints revealed in the tests provide data support for reasonably determining the disturbance instability criterion of joints. 展开更多
关键词 coupled static-dynamic loading instability energy irreversible displacement JOINTS stability
下载PDF
A laboratory method to simulate seismic waves induced by underground explosions
9
作者 Yuguo Ji Mingyang Wang +4 位作者 Jie Li Shuxin Deng Zhihao Li Tianhan Xu Fei Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1514-1530,共17页
The seismic waves induced by underground explosions generate geological hazards affecting deep buried tunnels such as rockbursts and engineering-induced earthquakes. This issue is difficult to study through full-scale... The seismic waves induced by underground explosions generate geological hazards affecting deep buried tunnels such as rockbursts and engineering-induced earthquakes. This issue is difficult to study through full-scale testing due to the expense and unpredictable danger. To solve this problem, the authors developed experimental apparatus and presented a laboratory method to simulate seismic waves induced by underground explosions. In this apparatus, a combined structure of a diffusive-shaped water capsule and a special-shaped oil capsule was designed. This structure can provide an applied confining stress and freely transmit the stress wave generated by external impact. Therefore, the coupled loading of in situ stress and seismic waves induced by underground explosions in the deep rock mass was simulated. The positive pressure time and peak value of the stress wave could be adjusted by changing the pulse-shaper and the initial impact energy. The obtained stress waves in the experiments correspond to that generated by 0.15-120 kt of TNT equivalent explosion at a scaled distance of 89.9-207.44 m/kt. 展开更多
关键词 Laboratory method Seismic wave Underground explosion Deep rock mass coupled loading Experimental apparatus
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部