Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynam...Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynamic system of coal and gas outburst is proposed.The framework of geo-dynamic system is composed of gassy coal mass,geological dynamic environment and mining disturbance.Equations of stress–damage–seepage interaction for gassy coal mass is constructed to resolve the outburst elimination process by gas extraction with boreholes through layer in foor roadway.The results show the occurrence of outburst is divided into the evolution process of gestation,formation,development and termination of geo-dynamic system.The scale range of outburst occurrence is determined,which provides a spatial basis for the prevention and control of outburst.The formation criterion and instability criterion of coal and gas outburst are established.The formation criterion F1 is defned as the scale of the geo-dynamic system,and the instability criterion F2 is defned as the scale of the outburst geo-body.According to the geo-dynamic system,the elimination mechanism of coal and gas outburst—‘unloading+depressurization’is established,and the gas extraction by boreholes through layer in foor roadway for outburst elimination is given.For the research case,when the gas extraction is 120 days,the gas pressure of the coal seam is reduced to below 0.4 MPa,and the outburst danger is eliminated efectively.展开更多
oupled stress release model is proposed in the paper considering the interaction between different parts based on stress release model by VereJones, and is used to historical earthquake data from North China. The resu...oupled stress release model is proposed in the paper considering the interaction between different parts based on stress release model by VereJones, and is used to historical earthquake data from North China. The results by this model are compared with the results by original stress release model using AIC criterion. The results show that coupled stress release model is better than original model.展开更多
Based on the construction interfaces in rolled control concrete dam(RCCD), the methods were proposed to calculate the influence thickness of construction interfaces and the corresponding physical mechanics parameters....Based on the construction interfaces in rolled control concrete dam(RCCD), the methods were proposed to calculate the influence thickness of construction interfaces and the corresponding physical mechanics parameters. The principle on establishing the coupling model of seepage_field and stress_field for RCCD was presented. A 3_D Finite Element Method(FEM) program was developed. Study shows that such parameters as the thickness of construction interfaces,the elastic ratio and the (Poisson's) ratio obtained by tests and theoretical analysis are more reasonable, the coupling model of seepage_field and stress_field for RCCD may indicate the coupling effect between the two fields scientifically, and the developed 3_D FEM program can reflect the effect of the construction interfaces more adequately. According to the study, many scientific opinions are given both to analyze the influence of the construction interfaces to the (dam's) characteristic, and to reveal the interaction between the stress_field and the seepage_field.展开更多
Although rainfall is rare on the Loess Plateau of western China, landslides occur frequently there in rainy season. Surveys report that landslide hazards always follow heavy rains. In this study, a seepage-stress coup...Although rainfall is rare on the Loess Plateau of western China, landslides occur frequently there in rainy season. Surveys report that landslide hazards always follow heavy rains. In this study, a seepage-stress coupling model for rainfall induced landslide is used to examine an actual disastrous event in Yulin by the end of July, 2017. The effects of rainfall duration, rainfall intensity and soil weakening on slope stability are studied in detail. The results illustrate that the safety factor drops sharply at first and then is gradually declining to below 1.05 during additional two days of heavy rain. With soil strength softening considered, the slope would be more unstable, in which the weakening in soil cohesion is found to be a more sensitive factor.展开更多
Finite element (FE) coupled thermal-mechanical analysis is widely used to predict the deformation and residualstress of wire arc additive manufacturing (WAAM) parts. In this study, an innovative single-layermulti-bead...Finite element (FE) coupled thermal-mechanical analysis is widely used to predict the deformation and residualstress of wire arc additive manufacturing (WAAM) parts. In this study, an innovative single-layermulti-bead profilegeometric modeling method through the isosceles trapezoid function is proposed to build the FE model of theWAAMprocess. Firstly, a straight-line model for overlapping beads based on the parabola function was establishedto calculate the optimal center distance. Then, the isosceles trapezoid-based profile was employed to replace theparabola profiles of the parabola-based overlapping model to establish an innovative isosceles trapezoid-basedmulti-bead overlapping geometric model. The rationality of the isosceles trapezoid-based overlapping model wasconfirmed by comparing the geometric deviation and the heat dissipation performance index of the two overlappingmodels. In addition, the FE-coupled thermal-mechanical analysis, as well as a comparative experiment of thesingle-layer eight-bead deposition process show that the simulation results of the above two models agree with theexperimental results. At the same time, the proposed isosceles trapezoid-based overlappingmodels are all straightlineprofiles, which can be divided into high-quality FE elements. It can improve the modeling efficiency andshorten the simulation calculation time. The innovative modeling method proposed in this study can provide anefficient and high-precision geometricmodelingmethod forWAAMpart FE coupled thermal-mechanical analysis.展开更多
In the process of mining coalbed methane(CBM),an unsteady state often arises due to the rapid extraction,release and pressure relief of CBM.In this case,the effective stress of coal changes dynamically,affecting the s...In the process of mining coalbed methane(CBM),an unsteady state often arises due to the rapid extraction,release and pressure relief of CBM.In this case,the effective stress of coal changes dynamically,affecting the stability of the gassy coal seam.In this paper,gas release tests of gassy coal under conventional triaxial compression were performed,and the dynamic effective stress(DES)during gas release was obtained indirectly based on a constitutive equation and deformation of coal.The results show that the maximum increases in DES caused by the release of free gas and adsorbed gas under the stress of 1.1 MPa were 0.811 and 5.418 MPa,respectively,which seriously affected the stress state of the coal.During the gas release,the free gas pressure and the adsorbed gas volume were the parameters that directly affected the DES and showed a positive linear relationship with the DES with an intercept of zero.The DES of the coal sample increased exponentially with time,which was determined by the contents of free and adsorbed gas.Based on the experimental results and theoretical analysis,an effective stress model was obtained for loaded gassy coal during gas release.The results of verification indicated accuracy greater than 99%.展开更多
The fault caused by a pantograph-catenary arc is the main factor that threatens the stability of high-speed railway energy transmission.Pantograph-catenary arc vertical drift is more severe than the case under normal ...The fault caused by a pantograph-catenary arc is the main factor that threatens the stability of high-speed railway energy transmission.Pantograph-catenary arc vertical drift is more severe than the case under normal pressure,as it is easy to develop the rigid busbar,which may lead to the flashover occurring around the support insulators.We establish a pantograph-catenary arc experiment and diagnosis platform to simulate low pressure and strong airflow environment.Meanwhile,the variation law of arc drift height with time under different air pressures and airflow velocities is analyzed.Moreover,arc drift characteristics and influencing factors are explored.The physical process of the arc column drifting to the rigid busbar with the jumping mechanism of the arc root on the rigid busbar is summarized.In order to further explore the mechanism of the above physical process,a multi-field stress coupling model is built,as the multi-stress variation law of arc is quantitatively evaluated.The dynamic action mechanism of multi-field stress on arc drifting characteristics is explored,as the physical mechanism of arc drifting under low pressure is theoretically explained.The research results provide theoretical support for arc suppression in high-altitude areas.展开更多
In civil engineering, more and more geological hazards are due to ignoring the interaction between seepage field and stress field(such as the water gushing in tunnel and other underground engineering). Faced this prob...In civil engineering, more and more geological hazards are due to ignoring the interaction between seepage field and stress field(such as the water gushing in tunnel and other underground engineering). Faced this problem, the article has given a mathematical model on coupling between seepage field and stress field, and carried out numerical simulation with FEM (finite element method). Finally, the numerical simulation of coupling between fractured groundwater seepage field and fractured water bearing media stress field on the longest tunnel in China shows that this method is successful. At the same time, the prediction of water gushing yield in this tunnels construction is given.展开更多
Groundwater flow through fractured rocks has been recognized as an important issue in many geotechnical engineering practices.Several key aspects of fundamental mechanisms,numerical modeling and engineering applicatio...Groundwater flow through fractured rocks has been recognized as an important issue in many geotechnical engineering practices.Several key aspects of fundamental mechanisms,numerical modeling and engineering applications of flow in fractured rocks are discussed.First,the microscopic mechanisms of fluid flow in fractured rocks,especially under the complex conditions of non-Darcian flow,multiphase flow,rock dissolution,and particle transport,have been revealed through a com-bined effort of visualized experiments and theoretical analysis.Then,laboratory and field methods of characterizing hydraulic properties(e.g.intrinsic permeability,inertial permeability,and unsaturated flow parameters)of fractured rocks in different flow regimes have been proposed.Subsequently,high-performance numerical simulation approaches for large-scale modeling of groundwater flow in frac-tured rocks and aquifers have been developed.Numerical procedures for optimization design of seepage control systems in various settings have also been proposed.Mechanisms of coupled hydro-mechanical processes and control of flow-induced deformation have been discussed.Finally,three case studies are presented to illustrate the applications of the improved theoretical understanding,characterization methods,modeling approaches,and seepage and deformation control strategies to geotechnical engi-neering projects.展开更多
Cemented tailings backfill(CTB) is made by mixing cement, tailings and water together, thus cement hydration and water seepage flow are the two crucial factors affecting the quality of CTB. Cement hydration process ca...Cemented tailings backfill(CTB) is made by mixing cement, tailings and water together, thus cement hydration and water seepage flow are the two crucial factors affecting the quality of CTB. Cement hydration process can release significant amount of heat to raise the temperature of CTB and in turn increase the rate of cement hydration. Meanwhile, the progress of cement hydration consumes water and produces hydration products to change the pore structures within CTB, which further influences the hydraulic behavior of CTB. In order to understand the hydraulic behavior of CTB, a numerical model was developed by coupling the hydraulic,thermal and hydration equations. This model was then implemented into COMSOL Multiphysics to simulate the evolutions of temperature and water seepage flow within CTB versus curing time. The predicted outcomes were compared with correspondent experimental results, proving the validity and availability of this model. By taking advantage of the validated model, effects of various initial CTB and curing temperatures, cement content, and CTB's geometric shapes on the hydraulic behavior of CTB were demonstrated numerically. The presented conclusions can contribute to preparing more environmentally friendly CTB structures.展开更多
Based on nine necessary basic assumptions for THM coupling model,this research comprehensively applied the theories of elastic mechanics,seepage mechanics and heat transfer,and established a real three-field and two-w...Based on nine necessary basic assumptions for THM coupling model,this research comprehensively applied the theories of elastic mechanics,seepage mechanics and heat transfer,and established a real three-field and two-way coupled mathematical model to reveal the connections among seepage field,deformation field and temperature field within the system of methane-containing coal.In comparison between numerical and analytical solutions,the coupling modeling for THM of methane-containing coal was proved to be correct by model application in the physical simulation experiment of coal and gas outburst.The model established in this paper was the improvement of traditional seepage theory of methane-containing coal and fluid-solid coupled model theory,which can be widely used in prevention of coal and gas outburst as well as exploitation of coal bed methane.展开更多
During the braking process,a large amount of heat energy is generated at the friction surfaces between the brake disc and pads and rapidly dissipates into the disc volume.In this paper,a three-dimensional thermo-mecha...During the braking process,a large amount of heat energy is generated at the friction surfaces between the brake disc and pads and rapidly dissipates into the disc volume.In this paper,a three-dimensional thermo-mechanical coupling model of high-speed wheel-mounted brake discs containing bolted joints and contact relationships is established.The direct coupling method is used to analyze the temperature and stress of the brake discs during an emergency braking event with an initial speed of 300 km/h.A full-scale bench test is also conducted to monitor the temperatures of the friction ring and bolted joints.The simulation result shows that the surface temperature of the friction ring reaches its peak value of 414°C after 102 s of braking,which agrees well with the bench test result.The maximum alternating thermal stress occurs in the bolt hole where the maximum circumferential compressive stress is−658 MPa and the maximum circumferential tensile stress is 134 MPa.During the braking process,the out-of-plane deformation of the middle part of the friction ring is larger than that of the edge,which increases the axial tensile load of the connecting bolt.This work provides support for the design of brake discs and connecting bolts.展开更多
The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydrau...The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydraulics and geochemistry theory,a coupling model for assessing the behavior of the curtain under a dam foundation is set up,which consists of seepage module,solute transport module,geochemistry module and curtain erosion module,solved by FEM.A case study was carried out.The result shows that the curtain efficiency is weakened all the time.Aqueous calcium from the curtain is always in dissolution during the stress period for simulation,which leads to the increasing amount in groundwater reaching 846.35-865.312 g/m3.Within the domain,reaction extent differs in different parts of the curtain.The dissolution of Ca(OH)2 accounts to 877.884 g/m3 near the bottom and is much higher than that of the other parts.The erosion is much more serious near the bottom of the curtain than the other parts,which is the same to the upstream and downstream.Calcium dissolution is mainly controlled by hydraulic condition and dispersion,and it varies in a non-linear way within the domain.展开更多
Water reinjection into the formation is an indispensable operation in many energy engineering practices.This operation involves a complex hydromechanical(HM)coupling process and sometimes even causes unpredictable dis...Water reinjection into the formation is an indispensable operation in many energy engineering practices.This operation involves a complex hydromechanical(HM)coupling process and sometimes even causes unpredictable disasters,such as induced seismicity.It is acknowledged that the relative magnitude and direction of the principal stresses significantly influence the HM behaviors of rocks during injection.However,due to the limitations of current testing techniques,it is still difficult to comprehensively conduct laboratory injection tests under various stress conditions,such as in triaxial extension stress states.To this end,a numerical study of HM changes in rocks during injection under different stress states is conducted.In this model,the saturated rock is first loaded to the target stress state under drainage conditions,and then the stress state is maintained and water is injected from the top to simulate the formation injection operation.Particular attention is given to the difference in HM changes under triaxial compression and extension stresses.This includes the differences in the pore pressure propagation,mean effective stress,volumetric strain,and stress-induced permeability.The numerical results demonstrate that the differential stress will significantly affect the HM behaviors of rocks,but the degree of influence is different under the two triaxial stress states.The HM changes caused by the triaxial compression stress states are generally greater than those of extension,but the differences decrease with increasing differential stress,indicating that the increase in the differential stress will weaken the impact of the stress state on the HM response.In addition,the shear failure potential of fracture planes with various inclination angles is analyzed and summarized under different stress states.It is recommended that engineers could design suitable injection schemes according to different tectonic stress fields versus fault occurrence to reduce the risk of injection-induced seismicity.展开更多
Groundwater exploitation has been regarded as the main reason for land subsidence in China and thus receives considerable attention from the government and the academic community.Recently,building loads have been iden...Groundwater exploitation has been regarded as the main reason for land subsidence in China and thus receives considerable attention from the government and the academic community.Recently,building loads have been identified as another important factor of land subsidence,but researches in this sector have lagged.The effect of a single building load on land subsidence was neglected in many cases owing to the narrow scope and the limited depth of the additional stress in stratum.However,due to the superposition of stresses between buildings,the additional stress of cluster loads is greater than that of a single building load under the same condition,so that the land subsidence caused by cluster loads cannot be neglected.Taking Shamen village in the north of Zhengzhou,China,as an example,a finite-difference model based on the Biot consolidation theory to calculate the land subsidence caused by cluster loads was established in this paper.Cluster loads present the characteristics of large-area loads,and the land subsidence caused by cluster loads can have multiple primary consolidation processes due to the stress superposition of different buildings was shown by the simulation results.Pore water migration distances are longer when the cluster loads with high plot ratio are imposed,so that consolidation takes longer time.The higher the plot ratio is,the deeper the effective deformation is,and thus the greater the land subsidence is.A higher plot ratio also increases the contribution that the deeper stratigraphic layers make to land subsidence.Contrary to the calculated results of land subsidence caused by cluster loads and groundwater recession,the percentage of settlement caused by cluster loads in the total settlement was 49.43%and 55.06%at two simulated monitoring points,respectively.These data suggest that the cluster loads can be one of the main causes of land subsidence.展开更多
Based on the analyses of aluminum melt flow, solidification, heat transfer during the process of twin-roll casting, a coupling mathematical model of aluminum thin-gauge high-speed casting was developed, which included...Based on the analyses of aluminum melt flow, solidification, heat transfer during the process of twin-roll casting, a coupling mathematical model of aluminum thin-gauge high-speed casting was developed, which included the casting roller shell. At the same time, Galerkin method was adopted to solve the coupling model. The fluid field and temperature field of aluminum melt in casting zone, the temperature field and thermal stress field of roller shells were simulated by the coupling model. When the casting velocity is 7m/min, and the thickness of strip is 2mm, the circumfluent area comes into being in the casting zone, and the mushy zone dominates the casting zone, while the temperature of melt decreases rapidly as it approaches the rollers. The temperature of the roller shell varies periodically with the rotation of roller, and reaches the highest temperature in the casting zone, while the temperature of roller shell decreases gradually as it leaves the casting zone. The difference of thermal stress between the inner surface and outer surface of the roller shell is very large, and the outer surface suffers tensile-compressive stress.展开更多
During reservoir operation,the erosion effects of groundwater change the porosity and permeability of the dam curtain,causing changes to the seepage field.To understand where the changes take place and to what degree ...During reservoir operation,the erosion effects of groundwater change the porosity and permeability of the dam curtain,causing changes to the seepage field.To understand where the changes take place and to what degree the porosity and permeability change,a multi-field coupling model was built and solved.The model takes into account seepage,solution concentration,and solid structure.The model was validated using uplift pressure monitoring data.Then,the variations in curtain porosity,seepage flow,and loss quantity of Ca(OH)2 were calculated.The key time nodes were obtained through curve fitting of the variation of seepage flow with the BiDoseResp function.The results showed that the model could reflect the attenuation trend of curtain performance well.The process and position of the erosion were not homogeneous.Although erosion mainly occurred at the top and bottom of the curtain,it was most developed at the top.The erosion effects developed slowly during the early stage,much fast during the middle and late stages,and culminated in complete dissolution.The model results and the daily monitoring data can provide a scientific basis for the safe operation and management of reservoirs.展开更多
Based on a typical multi-arch tunnel in a freeway, the fast Lagrangian analysis of continua in 3 dimensions(FLAC3D) was used to calculate the surrounding rock deformation of the tunnel under which the effect of underg...Based on a typical multi-arch tunnel in a freeway, the fast Lagrangian analysis of continua in 3 dimensions(FLAC3D) was used to calculate the surrounding rock deformation of the tunnel under which the effect of underground water seepage flow was taken into account or not. The distribution of displacement field around the multi-arch tunnel, which is influenced by the seepage field, was gained. The result indicates that the settlement values of the vault derived from coupling analysis are bigger when considering the seepage flow effect than that not considering. Through the contrast of arch subsidence quantities calculated by two kinds of computation situations, and the comparison between the calculated and measured value of tunnel vault settlement, it is found that the calculated value(5.7-6.0 mm) derived from considering the seepage effect is more close to the measured value(5.8-6.8 mm). Therefore, it is quite necessary to consider the seepage flow effect of the underground water in aquiferous stratum for multi-arch tunnel design.展开更多
The objective of this paper is to model the size-dependent thermo-mechanical behaviors of a shape memory polymer (SMP) microbeam.Size-dependent constitutive equations,which can capture the size effect of the SMP,are p...The objective of this paper is to model the size-dependent thermo-mechanical behaviors of a shape memory polymer (SMP) microbeam.Size-dependent constitutive equations,which can capture the size effect of the SMP,are proposed based on the modified couple stress theory (MCST).The deformation energy expression of the SMP microbeam is obtained by employing the proposed size-dependent constitutive equation and Bernoulli-Euler beam theory.An SMP microbeam model,which includes the formulations of deflection,strain,curvature,stress and couple stress,is developed by using the principle of minimum potential energy and the separation of variables together.The sizedependent thermo-mechanical and shape memory behaviors of the SMP microbeam and the influence of the Poisson ratio are numerically investigated according to the developed SMP microbeam model.Results show that the size effects of the SMP microbeam are significant when the dimensionless height is small enough.However,they are too slight to be necessarily considered when the dimensionless height is large enough.The bending flexibility and stress level of the SMP microbeam rise with the increasing dimensionless height,while the couple stress level declines with the increasing dimensionless height.The larger the dimensionless height is,the more obvious the viscous property and shape memory effect of the SMP microbeam are.The Poisson ratio has obvious influence on the size-dependent behaviors of the SMP microbeam.The paper provides a theoretical basis and a quantitatively analyzing tool for the design and analysis of SMP micro-structures in the field of biological medicine,microelectronic devices and micro-electro-mechanical system (MEMS) self-assembling.展开更多
In order to analyze the mechanism of deep hole high pressure hydraulic fracturing, nonlinear dynamic theory, damage mechanics, elastic-plastic mechanics are used, and the law of crack propagation and stress transfer u...In order to analyze the mechanism of deep hole high pressure hydraulic fracturing, nonlinear dynamic theory, damage mechanics, elastic-plastic mechanics are used, and the law of crack propagation and stress transfer under two deep hole hydraulic fracturing in tectonic stress areas is studied using seepage-stress coupling models with RFPA simulation software. In addition, the effects of rock burst control are tested using multiple methods, either in the stress field or in the energy field. The research findings show that with two deep holes hydraulic fracturing in tectonic stress areas, the direction of the main crack propagation under shear-tensile stress is parallel to the greatest principal stress direction. High-pressure hydraulic fracturing water seepage can result in the destruction of the coal structure, while also weakening the physical and mechanical properties of coal and rock. Therefore the impact of high stress concentration in hazardous areas will level off, which has an effect on rock burst prevention and control in the region.展开更多
基金supported by the National Natural Science Foundation of China(52004117,52174117 and 51674132)the Postdoctoral Science Foundation of China(2021T140290 and 2020M680975)the Discipline Innovation Team of Liaoning Technical University(LNTU20TD-03 and LNTU20TD-30).
文摘Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynamic system of coal and gas outburst is proposed.The framework of geo-dynamic system is composed of gassy coal mass,geological dynamic environment and mining disturbance.Equations of stress–damage–seepage interaction for gassy coal mass is constructed to resolve the outburst elimination process by gas extraction with boreholes through layer in foor roadway.The results show the occurrence of outburst is divided into the evolution process of gestation,formation,development and termination of geo-dynamic system.The scale range of outburst occurrence is determined,which provides a spatial basis for the prevention and control of outburst.The formation criterion and instability criterion of coal and gas outburst are established.The formation criterion F1 is defned as the scale of the geo-dynamic system,and the instability criterion F2 is defned as the scale of the outburst geo-body.According to the geo-dynamic system,the elimination mechanism of coal and gas outburst—‘unloading+depressurization’is established,and the gas extraction by boreholes through layer in foor roadway for outburst elimination is given.For the research case,when the gas extraction is 120 days,the gas pressure of the coal seam is reduced to below 0.4 MPa,and the outburst danger is eliminated efectively.
文摘oupled stress release model is proposed in the paper considering the interaction between different parts based on stress release model by VereJones, and is used to historical earthquake data from North China. The results by this model are compared with the results by original stress release model using AIC criterion. The results show that coupled stress release model is better than original model.
文摘Based on the construction interfaces in rolled control concrete dam(RCCD), the methods were proposed to calculate the influence thickness of construction interfaces and the corresponding physical mechanics parameters. The principle on establishing the coupling model of seepage_field and stress_field for RCCD was presented. A 3_D Finite Element Method(FEM) program was developed. Study shows that such parameters as the thickness of construction interfaces,the elastic ratio and the (Poisson's) ratio obtained by tests and theoretical analysis are more reasonable, the coupling model of seepage_field and stress_field for RCCD may indicate the coupling effect between the two fields scientifically, and the developed 3_D FEM program can reflect the effect of the construction interfaces more adequately. According to the study, many scientific opinions are given both to analyze the influence of the construction interfaces to the (dam's) characteristic, and to reveal the interaction between the stress_field and the seepage_field.
基金the financial support by the National Natural Science Foundation of China(11432015 and11602278)the Key Laboratory for Mechanics in Fluid Solid Coupling Systems(LMFS)Foundation of Young Scientist
文摘Although rainfall is rare on the Loess Plateau of western China, landslides occur frequently there in rainy season. Surveys report that landslide hazards always follow heavy rains. In this study, a seepage-stress coupling model for rainfall induced landslide is used to examine an actual disastrous event in Yulin by the end of July, 2017. The effects of rainfall duration, rainfall intensity and soil weakening on slope stability are studied in detail. The results illustrate that the safety factor drops sharply at first and then is gradually declining to below 1.05 during additional two days of heavy rain. With soil strength softening considered, the slope would be more unstable, in which the weakening in soil cohesion is found to be a more sensitive factor.
基金the National Natural Science Foundation of China(Grant No.51705287)the Scientific Research Foundation of Hubei Provincial Education Department(Grant No.D20211203).
文摘Finite element (FE) coupled thermal-mechanical analysis is widely used to predict the deformation and residualstress of wire arc additive manufacturing (WAAM) parts. In this study, an innovative single-layermulti-bead profilegeometric modeling method through the isosceles trapezoid function is proposed to build the FE model of theWAAMprocess. Firstly, a straight-line model for overlapping beads based on the parabola function was establishedto calculate the optimal center distance. Then, the isosceles trapezoid-based profile was employed to replace theparabola profiles of the parabola-based overlapping model to establish an innovative isosceles trapezoid-basedmulti-bead overlapping geometric model. The rationality of the isosceles trapezoid-based overlapping model wasconfirmed by comparing the geometric deviation and the heat dissipation performance index of the two overlappingmodels. In addition, the FE-coupled thermal-mechanical analysis, as well as a comparative experiment of thesingle-layer eight-bead deposition process show that the simulation results of the above two models agree with theexperimental results. At the same time, the proposed isosceles trapezoid-based overlappingmodels are all straightlineprofiles, which can be divided into high-quality FE elements. It can improve the modeling efficiency andshorten the simulation calculation time. The innovative modeling method proposed in this study can provide anefficient and high-precision geometricmodelingmethod forWAAMpart FE coupled thermal-mechanical analysis.
基金This research was funded by the National Natural Science Foundation of China(No.52174081)the China Postdoctoral Science Foundation(No.2021M702001)+1 种基金the Postdoctoral Innovation Project of Shandong Province(No.202102002)the Natural Science Foundation of Shandong Province(No.2019GSF111036).
文摘In the process of mining coalbed methane(CBM),an unsteady state often arises due to the rapid extraction,release and pressure relief of CBM.In this case,the effective stress of coal changes dynamically,affecting the stability of the gassy coal seam.In this paper,gas release tests of gassy coal under conventional triaxial compression were performed,and the dynamic effective stress(DES)during gas release was obtained indirectly based on a constitutive equation and deformation of coal.The results show that the maximum increases in DES caused by the release of free gas and adsorbed gas under the stress of 1.1 MPa were 0.811 and 5.418 MPa,respectively,which seriously affected the stress state of the coal.During the gas release,the free gas pressure and the adsorbed gas volume were the parameters that directly affected the DES and showed a positive linear relationship with the DES with an intercept of zero.The DES of the coal sample increased exponentially with time,which was determined by the contents of free and adsorbed gas.Based on the experimental results and theoretical analysis,an effective stress model was obtained for loaded gassy coal during gas release.The results of verification indicated accuracy greater than 99%.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51707166,51922090,U1966602,and U19A20105)the Sichuan Science and Technology General Project(Grant Nos.2019YJ0213 and2019JDJQ0019)。
文摘The fault caused by a pantograph-catenary arc is the main factor that threatens the stability of high-speed railway energy transmission.Pantograph-catenary arc vertical drift is more severe than the case under normal pressure,as it is easy to develop the rigid busbar,which may lead to the flashover occurring around the support insulators.We establish a pantograph-catenary arc experiment and diagnosis platform to simulate low pressure and strong airflow environment.Meanwhile,the variation law of arc drift height with time under different air pressures and airflow velocities is analyzed.Moreover,arc drift characteristics and influencing factors are explored.The physical process of the arc column drifting to the rigid busbar with the jumping mechanism of the arc root on the rigid busbar is summarized.In order to further explore the mechanism of the above physical process,a multi-field stress coupling model is built,as the multi-stress variation law of arc is quantitatively evaluated.The dynamic action mechanism of multi-field stress on arc drifting characteristics is explored,as the physical mechanism of arc drifting under low pressure is theoretically explained.The research results provide theoretical support for arc suppression in high-altitude areas.
文摘In civil engineering, more and more geological hazards are due to ignoring the interaction between seepage field and stress field(such as the water gushing in tunnel and other underground engineering). Faced this problem, the article has given a mathematical model on coupling between seepage field and stress field, and carried out numerical simulation with FEM (finite element method). Finally, the numerical simulation of coupling between fractured groundwater seepage field and fractured water bearing media stress field on the longest tunnel in China shows that this method is successful. At the same time, the prediction of water gushing yield in this tunnels construction is given.
基金The financial supports from the National Natural Science Foundation of China(Grant Nos.51988101,51925906 and 52122905)are gratefully acknowledged.
文摘Groundwater flow through fractured rocks has been recognized as an important issue in many geotechnical engineering practices.Several key aspects of fundamental mechanisms,numerical modeling and engineering applications of flow in fractured rocks are discussed.First,the microscopic mechanisms of fluid flow in fractured rocks,especially under the complex conditions of non-Darcian flow,multiphase flow,rock dissolution,and particle transport,have been revealed through a com-bined effort of visualized experiments and theoretical analysis.Then,laboratory and field methods of characterizing hydraulic properties(e.g.intrinsic permeability,inertial permeability,and unsaturated flow parameters)of fractured rocks in different flow regimes have been proposed.Subsequently,high-performance numerical simulation approaches for large-scale modeling of groundwater flow in frac-tured rocks and aquifers have been developed.Numerical procedures for optimization design of seepage control systems in various settings have also been proposed.Mechanisms of coupled hydro-mechanical processes and control of flow-induced deformation have been discussed.Finally,three case studies are presented to illustrate the applications of the improved theoretical understanding,characterization methods,modeling approaches,and seepage and deformation control strategies to geotechnical engi-neering projects.
基金Project(SKLCRSM13KFB05)supported by State Key Laboratory for Coal Resources and Safe Mining(China University of Mining&Technology)
文摘Cemented tailings backfill(CTB) is made by mixing cement, tailings and water together, thus cement hydration and water seepage flow are the two crucial factors affecting the quality of CTB. Cement hydration process can release significant amount of heat to raise the temperature of CTB and in turn increase the rate of cement hydration. Meanwhile, the progress of cement hydration consumes water and produces hydration products to change the pore structures within CTB, which further influences the hydraulic behavior of CTB. In order to understand the hydraulic behavior of CTB, a numerical model was developed by coupling the hydraulic,thermal and hydration equations. This model was then implemented into COMSOL Multiphysics to simulate the evolutions of temperature and water seepage flow within CTB versus curing time. The predicted outcomes were compared with correspondent experimental results, proving the validity and availability of this model. By taking advantage of the validated model, effects of various initial CTB and curing temperatures, cement content, and CTB's geometric shapes on the hydraulic behavior of CTB were demonstrated numerically. The presented conclusions can contribute to preparing more environmentally friendly CTB structures.
基金supported in part by the State Key Basic Research Program of China(No.2011CB201203)the General Project of the National Natural Science Foundation of China(No.50974141)+1 种基金the Key Project of the National Natural Science Foundation of China(No.50534080)the Key Special Subjects National Science and Technology of China(No.2011ZX05034-004)
文摘Based on nine necessary basic assumptions for THM coupling model,this research comprehensively applied the theories of elastic mechanics,seepage mechanics and heat transfer,and established a real three-field and two-way coupled mathematical model to reveal the connections among seepage field,deformation field and temperature field within the system of methane-containing coal.In comparison between numerical and analytical solutions,the coupling modeling for THM of methane-containing coal was proved to be correct by model application in the physical simulation experiment of coal and gas outburst.The model established in this paper was the improvement of traditional seepage theory of methane-containing coal and fluid-solid coupled model theory,which can be widely used in prevention of coal and gas outburst as well as exploitation of coal bed methane.
基金Supported by Natural Science Foundation of China(Grant No.52075032)Technology Research and Development Program Project of CHINA RAILWAY(Grant No.P2020J024).
文摘During the braking process,a large amount of heat energy is generated at the friction surfaces between the brake disc and pads and rapidly dissipates into the disc volume.In this paper,a three-dimensional thermo-mechanical coupling model of high-speed wheel-mounted brake discs containing bolted joints and contact relationships is established.The direct coupling method is used to analyze the temperature and stress of the brake discs during an emergency braking event with an initial speed of 300 km/h.A full-scale bench test is also conducted to monitor the temperatures of the friction ring and bolted joints.The simulation result shows that the surface temperature of the friction ring reaches its peak value of 414°C after 102 s of braking,which agrees well with the bench test result.The maximum alternating thermal stress occurs in the bolt hole where the maximum circumferential compressive stress is−658 MPa and the maximum circumferential tensile stress is 134 MPa.During the braking process,the out-of-plane deformation of the middle part of the friction ring is larger than that of the edge,which increases the axial tensile load of the connecting bolt.This work provides support for the design of brake discs and connecting bolts.
基金Project(50139030) supported by the National Natural Science Foundation of ChinaProject(501072) supported by the Scientific Research Foundation for the Returned Overseas Scholars of the Ministry of Education of China
文摘The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydraulics and geochemistry theory,a coupling model for assessing the behavior of the curtain under a dam foundation is set up,which consists of seepage module,solute transport module,geochemistry module and curtain erosion module,solved by FEM.A case study was carried out.The result shows that the curtain efficiency is weakened all the time.Aqueous calcium from the curtain is always in dissolution during the stress period for simulation,which leads to the increasing amount in groundwater reaching 846.35-865.312 g/m3.Within the domain,reaction extent differs in different parts of the curtain.The dissolution of Ca(OH)2 accounts to 877.884 g/m3 near the bottom and is much higher than that of the other parts.The erosion is much more serious near the bottom of the curtain than the other parts,which is the same to the upstream and downstream.Calcium dissolution is mainly controlled by hydraulic condition and dispersion,and it varies in a non-linear way within the domain.
基金funded by the National Natural Science Foundation of China(Grant Nos.41872210 and 41902297)IRSMGFZ Subsurface Utilization of Captured Carbon and Energy Storage System and the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering(Grant No.Z018004).
文摘Water reinjection into the formation is an indispensable operation in many energy engineering practices.This operation involves a complex hydromechanical(HM)coupling process and sometimes even causes unpredictable disasters,such as induced seismicity.It is acknowledged that the relative magnitude and direction of the principal stresses significantly influence the HM behaviors of rocks during injection.However,due to the limitations of current testing techniques,it is still difficult to comprehensively conduct laboratory injection tests under various stress conditions,such as in triaxial extension stress states.To this end,a numerical study of HM changes in rocks during injection under different stress states is conducted.In this model,the saturated rock is first loaded to the target stress state under drainage conditions,and then the stress state is maintained and water is injected from the top to simulate the formation injection operation.Particular attention is given to the difference in HM changes under triaxial compression and extension stresses.This includes the differences in the pore pressure propagation,mean effective stress,volumetric strain,and stress-induced permeability.The numerical results demonstrate that the differential stress will significantly affect the HM behaviors of rocks,but the degree of influence is different under the two triaxial stress states.The HM changes caused by the triaxial compression stress states are generally greater than those of extension,but the differences decrease with increasing differential stress,indicating that the increase in the differential stress will weaken the impact of the stress state on the HM response.In addition,the shear failure potential of fracture planes with various inclination angles is analyzed and summarized under different stress states.It is recommended that engineers could design suitable injection schemes according to different tectonic stress fields versus fault occurrence to reduce the risk of injection-induced seismicity.
基金National Key R&D Program of China:Effectively Utilized and Optimized Surface Water and Groundwater in the Fault Basin(2016YFC0502502)China Geology Survey(DD20190356&DD20189262)+1 种基金Chinese Academy of Geological Sciences(YKWF201628)National Natural Science Foundation of China(No.41272301)
文摘Groundwater exploitation has been regarded as the main reason for land subsidence in China and thus receives considerable attention from the government and the academic community.Recently,building loads have been identified as another important factor of land subsidence,but researches in this sector have lagged.The effect of a single building load on land subsidence was neglected in many cases owing to the narrow scope and the limited depth of the additional stress in stratum.However,due to the superposition of stresses between buildings,the additional stress of cluster loads is greater than that of a single building load under the same condition,so that the land subsidence caused by cluster loads cannot be neglected.Taking Shamen village in the north of Zhengzhou,China,as an example,a finite-difference model based on the Biot consolidation theory to calculate the land subsidence caused by cluster loads was established in this paper.Cluster loads present the characteristics of large-area loads,and the land subsidence caused by cluster loads can have multiple primary consolidation processes due to the stress superposition of different buildings was shown by the simulation results.Pore water migration distances are longer when the cluster loads with high plot ratio are imposed,so that consolidation takes longer time.The higher the plot ratio is,the deeper the effective deformation is,and thus the greater the land subsidence is.A higher plot ratio also increases the contribution that the deeper stratigraphic layers make to land subsidence.Contrary to the calculated results of land subsidence caused by cluster loads and groundwater recession,the percentage of settlement caused by cluster loads in the total settlement was 49.43%and 55.06%at two simulated monitoring points,respectively.These data suggest that the cluster loads can be one of the main causes of land subsidence.
文摘Based on the analyses of aluminum melt flow, solidification, heat transfer during the process of twin-roll casting, a coupling mathematical model of aluminum thin-gauge high-speed casting was developed, which included the casting roller shell. At the same time, Galerkin method was adopted to solve the coupling model. The fluid field and temperature field of aluminum melt in casting zone, the temperature field and thermal stress field of roller shells were simulated by the coupling model. When the casting velocity is 7m/min, and the thickness of strip is 2mm, the circumfluent area comes into being in the casting zone, and the mushy zone dominates the casting zone, while the temperature of melt decreases rapidly as it approaches the rollers. The temperature of the roller shell varies periodically with the rotation of roller, and reaches the highest temperature in the casting zone, while the temperature of roller shell decreases gradually as it leaves the casting zone. The difference of thermal stress between the inner surface and outer surface of the roller shell is very large, and the outer surface suffers tensile-compressive stress.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.51609150)the National Key Research and Development Program of China(Grant No.2018YFC0407103)the National Natural Science Foundation of China(Grant No.51779155)
文摘During reservoir operation,the erosion effects of groundwater change the porosity and permeability of the dam curtain,causing changes to the seepage field.To understand where the changes take place and to what degree the porosity and permeability change,a multi-field coupling model was built and solved.The model takes into account seepage,solution concentration,and solid structure.The model was validated using uplift pressure monitoring data.Then,the variations in curtain porosity,seepage flow,and loss quantity of Ca(OH)2 were calculated.The key time nodes were obtained through curve fitting of the variation of seepage flow with the BiDoseResp function.The results showed that the model could reflect the attenuation trend of curtain performance well.The process and position of the erosion were not homogeneous.Although erosion mainly occurred at the top and bottom of the curtain,it was most developed at the top.The erosion effects developed slowly during the early stage,much fast during the middle and late stages,and culminated in complete dissolution.The model results and the daily monitoring data can provide a scientific basis for the safe operation and management of reservoirs.
基金Project(50490274) supported by the National Natural Science Foundation of ChinaProject(200516) supported by Hunan Transportation Science and Technology
文摘Based on a typical multi-arch tunnel in a freeway, the fast Lagrangian analysis of continua in 3 dimensions(FLAC3D) was used to calculate the surrounding rock deformation of the tunnel under which the effect of underground water seepage flow was taken into account or not. The distribution of displacement field around the multi-arch tunnel, which is influenced by the seepage field, was gained. The result indicates that the settlement values of the vault derived from coupling analysis are bigger when considering the seepage flow effect than that not considering. Through the contrast of arch subsidence quantities calculated by two kinds of computation situations, and the comparison between the calculated and measured value of tunnel vault settlement, it is found that the calculated value(5.7-6.0 mm) derived from considering the seepage effect is more close to the measured value(5.8-6.8 mm). Therefore, it is quite necessary to consider the seepage flow effect of the underground water in aquiferous stratum for multi-arch tunnel design.
基金Project supported by the National Key Research and Development Program of China(No.2017YFC0307604)the Talent Foundation of China University of Petroleum(No.Y1215042)the Graduate Innovation Program of China University of Petroleum(East China)(No.YCX2019084)
文摘The objective of this paper is to model the size-dependent thermo-mechanical behaviors of a shape memory polymer (SMP) microbeam.Size-dependent constitutive equations,which can capture the size effect of the SMP,are proposed based on the modified couple stress theory (MCST).The deformation energy expression of the SMP microbeam is obtained by employing the proposed size-dependent constitutive equation and Bernoulli-Euler beam theory.An SMP microbeam model,which includes the formulations of deflection,strain,curvature,stress and couple stress,is developed by using the principle of minimum potential energy and the separation of variables together.The sizedependent thermo-mechanical and shape memory behaviors of the SMP microbeam and the influence of the Poisson ratio are numerically investigated according to the developed SMP microbeam model.Results show that the size effects of the SMP microbeam are significant when the dimensionless height is small enough.However,they are too slight to be necessarily considered when the dimensionless height is large enough.The bending flexibility and stress level of the SMP microbeam rise with the increasing dimensionless height,while the couple stress level declines with the increasing dimensionless height.The larger the dimensionless height is,the more obvious the viscous property and shape memory effect of the SMP microbeam are.The Poisson ratio has obvious influence on the size-dependent behaviors of the SMP microbeam.The paper provides a theoretical basis and a quantitatively analyzing tool for the design and analysis of SMP micro-structures in the field of biological medicine,microelectronic devices and micro-electro-mechanical system (MEMS) self-assembling.
基金Supported by the State Key Development Program for Basic Research of China (2010CB22686) the National Natural Science Foundation of China (51174112, 51174272)
文摘In order to analyze the mechanism of deep hole high pressure hydraulic fracturing, nonlinear dynamic theory, damage mechanics, elastic-plastic mechanics are used, and the law of crack propagation and stress transfer under two deep hole hydraulic fracturing in tectonic stress areas is studied using seepage-stress coupling models with RFPA simulation software. In addition, the effects of rock burst control are tested using multiple methods, either in the stress field or in the energy field. The research findings show that with two deep holes hydraulic fracturing in tectonic stress areas, the direction of the main crack propagation under shear-tensile stress is parallel to the greatest principal stress direction. High-pressure hydraulic fracturing water seepage can result in the destruction of the coal structure, while also weakening the physical and mechanical properties of coal and rock. Therefore the impact of high stress concentration in hazardous areas will level off, which has an effect on rock burst prevention and control in the region.