This paper investigates the Hopf bifurcations resulting from time delay in a coupled relative-rotation system with time- delay feedbacks. Firstly, considering external excitation, the dynamical equation of relative ro...This paper investigates the Hopf bifurcations resulting from time delay in a coupled relative-rotation system with time- delay feedbacks. Firstly, considering external excitation, the dynamical equation of relative rotation nonlinear dynamical system with primary resonance and 1:1 internal resonance under time-delay feedbacks is deduced. Secondly, the averaging equation is obtained by the multiple scales method. The periodic solution in a closed form is presented by a perturbation approach. At last, numerical simulations confirm that time-delay theoretical analyses have influence on the Hopf bifurcation point and the stability of periodic solution.展开更多
We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localiz...We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localized wave solution,the N-fold generalized Darboux transformation is given.Under the condition that the characteristic equation admits a double-root,we present the expression of the first-order interactional solution.Then we graphically analyze the dynamics of the breather and rogue wave.Due to the simultaneous existence of nonlinear and self-steepening terms in the equation,different profiles in two components for the breathers are presented.展开更多
We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota b...We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota bilinear method,and analyze the dynamical behaviors of these nondegenerate solitons.The results show that the shapes of the nondegenerate solitons are controllable by selecting different wave numbers,varying diffraction and nonlinearity parameters.In addition,when all the variable coefficients are chosen to be constant,the solutions obtained in this study reduce to the shape-preserving nondegenerate solitons.Finally,it is found that the nondegenerate two-soliton solutions can be bounded to form a double-hump two-soliton molecule after making the velocity of one double-hump soliton resonate with that of the other one.展开更多
A high order energy preserving scheme for a strongly coupled nonlinear Schrōdinger system is roposed by using the average vector field method. The high order energy preserving scheme is applied to simulate the solito...A high order energy preserving scheme for a strongly coupled nonlinear Schrōdinger system is roposed by using the average vector field method. The high order energy preserving scheme is applied to simulate the soliton evolution of the strongly coupled Schrōdinger system. Numerical results show that the high order energy preserving scheme can well simulate the soliton evolution, moreover, it preserves the discrete energy of the strongly coupled nonlinear Schrōdinger system exactly.展开更多
We study analytically and numerically the nonlinear collective dynamics of quasi-one-dimensional spin-orbit coupled spin-1 Bose-Einstein condensates trapped in harmonic potential.The ground state of the system is dete...We study analytically and numerically the nonlinear collective dynamics of quasi-one-dimensional spin-orbit coupled spin-1 Bose-Einstein condensates trapped in harmonic potential.The ground state of the system is determined by minimizing the Lagrange density,and the coupled equations of motions for the center-of-mass coordinate of the condensate and its width are derived.Then,two low energy excitation modes in breathing dynamics and dipole dynamics are obtained analytically,and the mechanism of exciting the anharmonic collective dynamics is revealed explicitly.The coupling among spin-orbit coupling,Raman coupling and spin-dependent interaction results in multiple external collective modes,which leads to the anharmonic collective dynamics.The cooperative effect of spin momentum locking and spin-dependent interaction results in coupling of dipolar and breathing dynamics,which strongly depends on spin-dependent interaction and behaves distinct characters in different phases.Interestingly,in the absence of spin-dependent interaction,the breathing dynamics is decoupled from spin dynamics and the breathing dynamics is harmonic.Our results provide theoretical evidence for deep understanding of the ground sate phase transition and the nonlinear collective dynamics of the system.展开更多
The global solution for a coupled nonlinear Klein-Gordon system in two- dimensional space was studied. First, a sharp threshold of blowup and global existence for the system was obtained by constructing a type of cros...The global solution for a coupled nonlinear Klein-Gordon system in two- dimensional space was studied. First, a sharp threshold of blowup and global existence for the system was obtained by constructing a type of cross-constrained variational problem and establishing so-called cross-invariant manifolds of the evolution flow. Then the result of how small the initial data for which the solution exists globally was proved by using the scaling argument.展开更多
With the rapid development of communication technology,optical fiber communication has become a key research area in communications.When there are two signals in the optical fiber,the transmission of them can be abstr...With the rapid development of communication technology,optical fiber communication has become a key research area in communications.When there are two signals in the optical fiber,the transmission of them can be abstracted as a high-order coupled nonlinear Schr¨odinger system.In this paper,by using the Hirota’s method,we construct the bilinear forms,and study the analytical solution of three solitons in the case of focusing interactions.In addition,by adjusting different wave numbers for phase control,we further discuss the influence of wave numbers on soliton transmissions.It is verified that wave numbers k_(11),k_(21),k_(31),k_(22),and k_(32)can control the fusion and fission of solitons.The results are beneficial to the study of all-optical switches and fiber lasers in nonlinear optics.展开更多
In this work, we investigate the amplitude death in coupled system with small number of nonlinear oscillators. We show how the transitions to the partial and the complete amplitude deathes happen. We also show that th...In this work, we investigate the amplitude death in coupled system with small number of nonlinear oscillators. We show how the transitions to the partial and the complete amplitude deathes happen. We also show that the partial amplitude death can be found in globally coupled oscillators either.展开更多
The dynamical character for a perturbed coupled nonlinear Schrodinger system with periodic boundary condition was studied. First, the dynamical character of perturbed and unperturbed systems on the invariant plane was...The dynamical character for a perturbed coupled nonlinear Schrodinger system with periodic boundary condition was studied. First, the dynamical character of perturbed and unperturbed systems on the invariant plane was analyzed by the spectrum of the linear operator. Then the existence of the locally invariant manifolds was proved by the singular perturbation theory and the fixed-point argument.展开更多
The quaternion approach to solve the coupled nonlinear Schrodinger equations (CNSEs) in fibers is proposed, converting the CNSEs to a single variable equation by using a conception of eigen-quaternion of coupled qua...The quaternion approach to solve the coupled nonlinear Schrodinger equations (CNSEs) in fibers is proposed, converting the CNSEs to a single variable equation by using a conception of eigen-quaternion of coupled quater- nion. The crosstalk of quarter-phase-shift-key signals caused by fiber nonlinearity in polarization multiplexing systems with 100 Cbps bit-rate is investigated and simulated. The results demonstrate that the crosstalk is like a rotated ghosting of input constellation. For the 50 km conventional fiber link, when the total power is less than 4roW, the crosstalk effect can be neglected; when the power is larger than 20roW, the crosstalk is very obvious. In addition, the crosstalk can not be detected according to the output eye diagram and state of polarization in Poincare sphere in the trunk fiber, making it difficult for the monitoring of optical trunk link.展开更多
The coupled higher-order nonlinear Schroedinger system is a major subject in nonlinear optics as one of the nonlinear partial differential equation which describes the propagation of optical pulses in optic fibers. By...The coupled higher-order nonlinear Schroedinger system is a major subject in nonlinear optics as one of the nonlinear partial differential equation which describes the propagation of optical pulses in optic fibers. By using coupled amplitude-phase formulation, a series of new exact cnoidal and solitary wave solutions with different parameters are obtained, which may have potential application in optical communication.展开更多
In this paper, the problem of initial boundary value for nonlinear coupled reaction-diffusion systems arising in biochemistry, engineering and combustion_theory is considered.
Optical fibers are seen in the optical sensing and optical fiber communication. Simultaneous propagation of optical pulses in an inhomogeneous optical fiber is described by a coupled time-dependent coefficient fourth-...Optical fibers are seen in the optical sensing and optical fiber communication. Simultaneous propagation of optical pulses in an inhomogeneous optical fiber is described by a coupled time-dependent coefficient fourth-order nonlinear Schr?dinger system, which is discussed in this paper. For such a system, we work out the Lax pair, Darboux transformation, and corresponding vector semi-rational nonautonomous rogue wave solutions. When the group velocity dispersion(GVD) and fourth-order dispersion(FOD) coefficients are the constants, we exhibit the first-and second-order vector semirational rogue waves which are composed of the four-petalled rogue waves and eye-shaped breathers. Both the width of the rogue wave along the time axis and temporal separation between the adjacent peaks of the breather decrease with the GVD coefficient or FOD coefficient. With the GVD and FOD coefficients as the linear, cosine, and exponential functions, we respectively present the first-and second-order periodic vector semi-rational rogue waves, first-and second-order asymmetry vector semi-rational rogue waves, and interactions between the eye-shaped breathers and the composite rogue waves.展开更多
An extended ocean-atmosphere coupled characteristic system including thermodynamic physical processes in ocean mixed layer is formulated in order to describe SST explicitly and remove possible limitation of ocean-atmo...An extended ocean-atmosphere coupled characteristic system including thermodynamic physical processes in ocean mixed layer is formulated in order to describe SST explicitly and remove possible limitation of ocean-atmosphere coupling assumption in hydrodynamic ENSO models. It is revealed that there is a kind of abrupt nonlinear characteristic behaviour, which relates to rapid onset and intermittency of El Nino events, on the second order slow time scale due to the nonlinear interaction between a linear unstable low-frequency primary eigen component of ocean-atmosphere coupled Kelvin wave and its higher order harmonic components under a strong ocean-atmosphere coupling background. And, on the other hand, there is a kind of finite amplitude nonlinear characteristic behaviour on the second order slow time scale due to the nonlinear interaction between the linear unstable primary eigen component and its higher order harmonic components under a weak ocean-atmosphere coupling background in this model system.展开更多
In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equat...In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.展开更多
The symmetries, symmetry reductions, and exact solutions of a coupled nonlinear Schrodinger (CNLS) equation derived from the governing system for atmospheric gravity waves are researched by means of classical Lie gr...The symmetries, symmetry reductions, and exact solutions of a coupled nonlinear Schrodinger (CNLS) equation derived from the governing system for atmospheric gravity waves are researched by means of classical Lie group approach in this paper. Calculation shows the CNLS equation is invariant under some Galilean transformations, scaling transformations, phase shifts, and space-time translations. Some ordinary differential equations are derived from the CNLS equation. Several exact solutions including envelope cnoidal waves, solitary waves and trigonometric function solutions for the CNLS equation are also obtained by making use of symmetries.展开更多
In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the ...In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the first-order modifications. Based on the asymptotical solutions, the effects of perturbations on soliton parameters and the collision between two solitons are then discussed in brief. Furthermore, we directly simulate the perturbed coupled nonlinear SchrSdinger equations by split-step Fourier method to check the validity of the direct perturbation method. It turns out that our analytical results are well supported by the numerical calculations.展开更多
The coupled modified nonlinear Schrodinger equations are under investigation in this work. Starting from analyzing the spectral problem of the Lax pair, a Riemann-Hilbert problem for the coupled modified nonlinear Sch...The coupled modified nonlinear Schrodinger equations are under investigation in this work. Starting from analyzing the spectral problem of the Lax pair, a Riemann-Hilbert problem for the coupled modified nonlinear Schrodinger equations is formulated. And then, through solving the obtained Riemann-Hilbert problem under the conditions of irregularity and reflectionless case, N-soliton solutions for the equations are presented. Furthermore, the localized structures and dynamic behaviors of the one-soliton solution are shown graphically.展开更多
In this work, we will derive numerical schemes for solving 3-coupled nonlinear Schrödinger equations using finite difference method and time splitting method combined with finite difference method. The result...In this work, we will derive numerical schemes for solving 3-coupled nonlinear Schrödinger equations using finite difference method and time splitting method combined with finite difference method. The resulting schemes are highly accurate, unconditionally stable. We use the exact single soliton solution and the conserved quantities to check the accuracy and the efficiency of the proposed schemes. Also, we use these methods to study the interaction dynamics of two solitons. It is found that both elastic and inelastic collision can take place under suitable parametric conditions. We have noticed that the inelastic collision of single solitons occurs in two different manners: enhancement or suppression of the amplitude.展开更多
The coupled nonlinear Schodinger equations (CNLSEs) of two symmetrical optical fibres are nonintegrable, however the transformed CNLSEs have integrability. Integrability of the transformed CNLSEs is proved by the Ha...The coupled nonlinear Schodinger equations (CNLSEs) of two symmetrical optical fibres are nonintegrable, however the transformed CNLSEs have integrability. Integrability of the transformed CNLSEs is proved by the Hamilton dynamics theory and Galilei transform. Making use of a transform for CNLSEs and using the ansatz with Jacobi elliptic function form, this paper obtains the exact optical pulse solutions.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61104040)the Natural Science Foundation of Hebei Province,China(Grant No.E2012203090)
文摘This paper investigates the Hopf bifurcations resulting from time delay in a coupled relative-rotation system with time- delay feedbacks. Firstly, considering external excitation, the dynamical equation of relative rotation nonlinear dynamical system with primary resonance and 1:1 internal resonance under time-delay feedbacks is deduced. Secondly, the averaging equation is obtained by the multiple scales method. The periodic solution in a closed form is presented by a perturbation approach. At last, numerical simulations confirm that time-delay theoretical analyses have influence on the Hopf bifurcation point and the stability of periodic solution.
基金the National Natural Science Foundation of China(Grant Nos.11871232 and 12201578)Natural Science Foundation of Henan Province,China(Grant Nos.222300420377 and 212300410417)。
文摘We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localized wave solution,the N-fold generalized Darboux transformation is given.Under the condition that the characteristic equation admits a double-root,we present the expression of the first-order interactional solution.Then we graphically analyze the dynamics of the breather and rogue wave.Due to the simultaneous existence of nonlinear and self-steepening terms in the equation,different profiles in two components for the breathers are presented.
基金supported by the National Natural Science Foundation of China (Grant Nos.11975204 and 12075208)the Project of Zhoushan City Science and Technology Bureau (Grant No.2021C21015)the Training Program for Leading Talents in Universities of Zhejiang Province。
文摘We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota bilinear method,and analyze the dynamical behaviors of these nondegenerate solitons.The results show that the shapes of the nondegenerate solitons are controllable by selecting different wave numbers,varying diffraction and nonlinearity parameters.In addition,when all the variable coefficients are chosen to be constant,the solutions obtained in this study reduce to the shape-preserving nondegenerate solitons.Finally,it is found that the nondegenerate two-soliton solutions can be bounded to form a double-hump two-soliton molecule after making the velocity of one double-hump soliton resonate with that of the other one.
基金Project supported by the National Natural Science Foundation of China(Grant No.11161017)the National Science Foundation of Hainan Province,China(Grant No.113001)
文摘A high order energy preserving scheme for a strongly coupled nonlinear Schrōdinger system is roposed by using the average vector field method. The high order energy preserving scheme is applied to simulate the soliton evolution of the strongly coupled Schrōdinger system. Numerical results show that the high order energy preserving scheme can well simulate the soliton evolution, moreover, it preserves the discrete energy of the strongly coupled nonlinear Schrōdinger system exactly.
基金supported by the National Natural Science Foundation of China(Grant Nos.12164042,12264045,11764039,11475027,11865014,12104374,and 11847304)the Natural Science Foundation of Gansu Province(Grant Nos.17JR5RA076 and 20JR5RA526)+2 种基金the Scientific Research Project of Gansu Higher Education(Grant No.2016A-005)the Innovation Capability Enhancement Project of Gansu Higher Education(Grant Nos.2020A-146 and 2019A-014)the Creation of Science and Technology of Northwest Normal University(Grant No.NWNU-LKQN-18-33)。
文摘We study analytically and numerically the nonlinear collective dynamics of quasi-one-dimensional spin-orbit coupled spin-1 Bose-Einstein condensates trapped in harmonic potential.The ground state of the system is determined by minimizing the Lagrange density,and the coupled equations of motions for the center-of-mass coordinate of the condensate and its width are derived.Then,two low energy excitation modes in breathing dynamics and dipole dynamics are obtained analytically,and the mechanism of exciting the anharmonic collective dynamics is revealed explicitly.The coupling among spin-orbit coupling,Raman coupling and spin-dependent interaction results in multiple external collective modes,which leads to the anharmonic collective dynamics.The cooperative effect of spin momentum locking and spin-dependent interaction results in coupling of dipolar and breathing dynamics,which strongly depends on spin-dependent interaction and behaves distinct characters in different phases.Interestingly,in the absence of spin-dependent interaction,the breathing dynamics is decoupled from spin dynamics and the breathing dynamics is harmonic.Our results provide theoretical evidence for deep understanding of the ground sate phase transition and the nonlinear collective dynamics of the system.
基金Project supported by the National Natural Science Foundation of China (No.10271084)the Natural Science Foundation for Young Scholars of Sichuan Province of China (No.07JQ0094)
文摘The global solution for a coupled nonlinear Klein-Gordon system in two- dimensional space was studied. First, a sharp threshold of blowup and global existence for the system was obtained by constructing a type of cross-constrained variational problem and establishing so-called cross-invariant manifolds of the evolution flow. Then the result of how small the initial data for which the solution exists globally was proved by using the scaling argument.
基金supported by the National Natural Science Foundation of China(Grant Nos.11875008,12075034,11975001,and 11975172)the Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology(Grant No.SKL2018KF04)the Fundamental Research Funds for the Central Universities,China(Grant No.2019XD-A09-3)。
文摘With the rapid development of communication technology,optical fiber communication has become a key research area in communications.When there are two signals in the optical fiber,the transmission of them can be abstracted as a high-order coupled nonlinear Schr¨odinger system.In this paper,by using the Hirota’s method,we construct the bilinear forms,and study the analytical solution of three solitons in the case of focusing interactions.In addition,by adjusting different wave numbers for phase control,we further discuss the influence of wave numbers on soliton transmissions.It is verified that wave numbers k_(11),k_(21),k_(31),k_(22),and k_(32)can control the fusion and fission of solitons.The results are beneficial to the study of all-optical switches and fiber lasers in nonlinear optics.
基金supported by National Natural Science Foundation of China under Grant No.10775022the New Century Excellent Talent Project of the Ministry of Education of China under Grant No.07-0112
文摘In this work, we investigate the amplitude death in coupled system with small number of nonlinear oscillators. We show how the transitions to the partial and the complete amplitude deathes happen. We also show that the partial amplitude death can be found in globally coupled oscillators either.
文摘The dynamical character for a perturbed coupled nonlinear Schrodinger system with periodic boundary condition was studied. First, the dynamical character of perturbed and unperturbed systems on the invariant plane was analyzed by the spectrum of the linear operator. Then the existence of the locally invariant manifolds was proved by the singular perturbation theory and the fixed-point argument.
基金Supported by the National Natural Science Foundation of China under Grant No 61275075the Beijing Natural Science Foundation under Grant Nos 4132035 and 4144080
文摘The quaternion approach to solve the coupled nonlinear Schrodinger equations (CNSEs) in fibers is proposed, converting the CNSEs to a single variable equation by using a conception of eigen-quaternion of coupled quater- nion. The crosstalk of quarter-phase-shift-key signals caused by fiber nonlinearity in polarization multiplexing systems with 100 Cbps bit-rate is investigated and simulated. The results demonstrate that the crosstalk is like a rotated ghosting of input constellation. For the 50 km conventional fiber link, when the total power is less than 4roW, the crosstalk effect can be neglected; when the power is larger than 20roW, the crosstalk is very obvious. In addition, the crosstalk can not be detected according to the output eye diagram and state of polarization in Poincare sphere in the trunk fiber, making it difficult for the monitoring of optical trunk link.
文摘The coupled higher-order nonlinear Schroedinger system is a major subject in nonlinear optics as one of the nonlinear partial differential equation which describes the propagation of optical pulses in optic fibers. By using coupled amplitude-phase formulation, a series of new exact cnoidal and solitary wave solutions with different parameters are obtained, which may have potential application in optical communication.
文摘In this paper, the problem of initial boundary value for nonlinear coupled reaction-diffusion systems arising in biochemistry, engineering and combustion_theory is considered.
基金Project supported by the BUPT Excellent Ph.D.Students Foundation(Grant No.CX2019201)the National Natural Science Foundation of China(Grant Nos.11772017 and 11805020)+1 种基金the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),China(Grant No.IPOC:2017ZZ05)the Fundamental Research Funds for the Central Universities of China(Grant No.2011BUPTYB02)。
文摘Optical fibers are seen in the optical sensing and optical fiber communication. Simultaneous propagation of optical pulses in an inhomogeneous optical fiber is described by a coupled time-dependent coefficient fourth-order nonlinear Schr?dinger system, which is discussed in this paper. For such a system, we work out the Lax pair, Darboux transformation, and corresponding vector semi-rational nonautonomous rogue wave solutions. When the group velocity dispersion(GVD) and fourth-order dispersion(FOD) coefficients are the constants, we exhibit the first-and second-order vector semirational rogue waves which are composed of the four-petalled rogue waves and eye-shaped breathers. Both the width of the rogue wave along the time axis and temporal separation between the adjacent peaks of the breather decrease with the GVD coefficient or FOD coefficient. With the GVD and FOD coefficients as the linear, cosine, and exponential functions, we respectively present the first-and second-order periodic vector semi-rational rogue waves, first-and second-order asymmetry vector semi-rational rogue waves, and interactions between the eye-shaped breathers and the composite rogue waves.
文摘An extended ocean-atmosphere coupled characteristic system including thermodynamic physical processes in ocean mixed layer is formulated in order to describe SST explicitly and remove possible limitation of ocean-atmosphere coupling assumption in hydrodynamic ENSO models. It is revealed that there is a kind of abrupt nonlinear characteristic behaviour, which relates to rapid onset and intermittency of El Nino events, on the second order slow time scale due to the nonlinear interaction between a linear unstable low-frequency primary eigen component of ocean-atmosphere coupled Kelvin wave and its higher order harmonic components under a strong ocean-atmosphere coupling background. And, on the other hand, there is a kind of finite amplitude nonlinear characteristic behaviour on the second order slow time scale due to the nonlinear interaction between the linear unstable primary eigen component and its higher order harmonic components under a weak ocean-atmosphere coupling background in this model system.
文摘In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.
基金supported by the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institutethe National Natural Science Foundation of China under Grant Nos. 10735030 and 90503006
文摘The symmetries, symmetry reductions, and exact solutions of a coupled nonlinear Schrodinger (CNLS) equation derived from the governing system for atmospheric gravity waves are researched by means of classical Lie group approach in this paper. Calculation shows the CNLS equation is invariant under some Galilean transformations, scaling transformations, phase shifts, and space-time translations. Some ordinary differential equations are derived from the CNLS equation. Several exact solutions including envelope cnoidal waves, solitary waves and trigonometric function solutions for the CNLS equation are also obtained by making use of symmetries.
基金Project supported by the National Natural Science Foundation of China (Grant No 10575087) and the Natural Science Foundation of Zheiiang Province of China (Grant No 102053). 0ne of the authors (Lin) would like to thank Prof. Sen-yue Lou for many useful discussions.
文摘In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the first-order modifications. Based on the asymptotical solutions, the effects of perturbations on soliton parameters and the collision between two solitons are then discussed in brief. Furthermore, we directly simulate the perturbed coupled nonlinear SchrSdinger equations by split-step Fourier method to check the validity of the direct perturbation method. It turns out that our analytical results are well supported by the numerical calculations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61072147 and 11271008)
文摘The coupled modified nonlinear Schrodinger equations are under investigation in this work. Starting from analyzing the spectral problem of the Lax pair, a Riemann-Hilbert problem for the coupled modified nonlinear Schrodinger equations is formulated. And then, through solving the obtained Riemann-Hilbert problem under the conditions of irregularity and reflectionless case, N-soliton solutions for the equations are presented. Furthermore, the localized structures and dynamic behaviors of the one-soliton solution are shown graphically.
文摘In this work, we will derive numerical schemes for solving 3-coupled nonlinear Schrödinger equations using finite difference method and time splitting method combined with finite difference method. The resulting schemes are highly accurate, unconditionally stable. We use the exact single soliton solution and the conserved quantities to check the accuracy and the efficiency of the proposed schemes. Also, we use these methods to study the interaction dynamics of two solitons. It is found that both elastic and inelastic collision can take place under suitable parametric conditions. We have noticed that the inelastic collision of single solitons occurs in two different manners: enhancement or suppression of the amplitude.
文摘The coupled nonlinear Schodinger equations (CNLSEs) of two symmetrical optical fibres are nonintegrable, however the transformed CNLSEs have integrability. Integrability of the transformed CNLSEs is proved by the Hamilton dynamics theory and Galilei transform. Making use of a transform for CNLSEs and using the ansatz with Jacobi elliptic function form, this paper obtains the exact optical pulse solutions.