期刊文献+
共找到143篇文章
< 1 2 8 >
每页显示 20 50 100
Coupled Transfer of Water and Heat in Red Soil: Experiment and Numerical Modelling 被引量:4
1
作者 HANXIAOFEI LUJUN 《Pedosphere》 SCIE CAS CSCD 2001年第2期123-130,共8页
Coupled transfer of soil water and heat in closed columns of homogeneous red soil was studied under laboratory conditions. A coupled model was constructed using soil physical theory, empirical equations and experiment... Coupled transfer of soil water and heat in closed columns of homogeneous red soil was studied under laboratory conditions. A coupled model was constructed using soil physical theory, empirical equations and experimental data to predict the coupled transfer. The results show that transport of soil water was affected by temperature gradient, and the largest net water transport was found in the soil column with initial water content of 0.148 m3 m-3. At the same time, temperature changes with the transport of soil water was in a nonlinear shape as heat parameters were function of water content, and the changes of temperature were positively correlated with the net amount of water transported. Numerical modelling results show that the predicted values of temperature distribution were close to the observed values, while the predicted values of water content exhibited limited deviation at both ends of the soil column due to the slight temperature changes at both ends. It was indicated that the model proposed here was applicable. 展开更多
关键词 coupled transfer of water and heat numerical modelling red soil
下载PDF
STUDY OF THE HEAT AND HUMIDITY TRANSFER PROCESSES BETWEEN AIR AND WATER IN THE AIR WASHER
2
作者 刘刚 《Journal of China Textile University(English Edition)》 EI CAS 1997年第1期49-53,共5页
The processes of heat and humidity transfer between air and water are what to be studied mainly in the paper, we put forward some main factors which influence the processes of heat and humidity transfer in the air was... The processes of heat and humidity transfer between air and water are what to be studied mainly in the paper, we put forward some main factors which influence the processes of heat and humidity transfer in the air washer. We come to the conclusion that we can change these main factors to achieve different heat and humidity transfer processes and decide processes of heat and humidity transfer of air and water with the initial temperature of spraying water in the air washer. All these results can make things convenient for the air conditioning management. 展开更多
关键词 AIR WASHER the processes of heat and humidity transfer water-air ratio the initialstate of the AIR the initial temperature of SPRAYING water AIR CONDITIONING water droplet.
下载PDF
ANALYSIS OF THE THERMOPHYSICAL PARAMETERS OF MOIST WOOD PARTICLE MATERIAL IN A COUPLED HEAT AND MASS TRANSFER PROCESS OF FREEZING BY USING FINITE ELEMENT METHOD
3
作者 Shang DekuNortheast Forestry University 《Journal of Northeast Forestry University》 SCIE CAS CSCD 1991年第2期69-76,共8页
The coupled heat and moisture transfer in a freezing process of wood particle material was mathematically modeled in the paper. The models were interactively solved by using the numerical method(the finite element met... The coupled heat and moisture transfer in a freezing process of wood particle material was mathematically modeled in the paper. The models were interactively solved by using the numerical method(the finite element method and the finite difference method). By matching the theoretical calculation to an experiment, the nonlinear problem was analyzed and the variable thermophysical parameters concerned was evaluated. The analysis procedure and the evaluation of the parameters were presented in detail. The result of the study showed that by using the method as described in the paper, it was possible to determine the variable (with respect to temperature, moisture content and freezing state) thermophysical parameters which were unknown or difficult to measure as long as the governing equations for a considered process were available. The method can significantly reduces the experiment efforts for determining thermophysical parameters which arc very complicated to measure. The determined variable of the effective heat conductivity of wood particle material was given in the paper. The error of the numerical calculation was also estimated by the comparison with a matched experiment. 展开更多
关键词 Finite element method Freezing process coupled heat and mass transfer Variable thermophysical parameters
下载PDF
Water and heat transport in hilly red soil of southern China:I. Experiment and analysis 被引量:4
4
作者 吕军 黄志珍 韩晓非 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第5期331-337,共7页
Studies on coupled transfer of soil moisture and heat have been widely carried out for decades. However, little work has been done on red soils, widespread in southern China. The simultaneous transfer of soil moisture... Studies on coupled transfer of soil moisture and heat have been widely carried out for decades. However, little work has been done on red soils, widespread in southern China. The simultaneous transfer of soil moisture and heat depends on soil physical properties and the climate conditions. Red soil is heavy clay and high content of free iron and aluminum oxide. The climate conditions are characterized by the clear four seasons and the serious seasonal drought. The great annual and diurnal air temperature differences result in significant fluctuation in soil temperature in top layer. The closed and evaporating columns experiments with red soil were conducted to simulate the coupled transfer of soil water and heat under the overlaying and opening fields’ conditions, and to analyze the effects of soil temperature gradient on the water transfer and the effects of initial soil water contents on the transfer of soil water and heat. The closed and evaporating columns were designed similarly with about 18 °C temperatures differences between the top and bottom boundary, except of the upper end closed or exposed to the air, respectively. Results showed that in the closed column, water moved towards the cold end driven by temperature gradient, while the transported water decreased with the increasing initial soil water content until the initial soil water content reached to field capacity equivalent, when almost no changes for the soil moisture profile. In the evaporating column, the net transport of soil water was simultaneously driven by evaporation and temperature gradients, and the drier soil was more influenced by temperature gradient than by evapo- ration. In drier soil, it took a longer time for the temperature to reach equilibrium, because of more net amount of transported water. 展开更多
关键词 Red soil coupled transfer of water and heat EVAPORATION Initial soil moisture
下载PDF
Water and heat transport in hilly red soil of southern China:II. Modeling and simulation 被引量:2
5
作者 吕军 黄志珍 韩晓非 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第5期338-345,共8页
Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China. Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Vi... Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China. Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Visual Basic 6.0, was developed to predict the coupled transfer of water and heat in hilly red soil. A series of soil column experiments for soil water and heat transfer, including soil columns with closed and evaporating top ends, were used to test the simulation model. Results showed that in the closed columns, the temporal and spatial distribution of moisture and heat could be very well predicted by the model, while in the evaporating columns, the simulated soil water contents were somewhat different from the observed ones. In the heat flow equation by Taylor and Lary (1964), the effect of soil water evaporation on the heat flow is not involved, which may be the main reason for the differences between simulated and observed results. The predicted temperatures were not in agreement with the observed one with thermal conductivities calculated by de Vries and Wierenga equations, so that it is suggested that Kh, soil heat conductivity, be multiplied by 8.0 for the first 6.5 h and by 1.2 later on. Sensitivity analysis of soil water and heat coefficients showed that the saturated hydraulic conductivity, KS, and the water diffusivity, D(θ), had great effects on soil water transport; the variation of soil porosity led to the difference of soil thermal properties, and accordingly changed temperature redistribution, which would affect water redistribution. 展开更多
关键词 Red soil coupled transfer of soil water and heat Simulation model VALIDATION Sensitivity analysis
下载PDF
Optimization of Dividing Wall Column with Heat Transfer Process Across the Wall for Feed Properties Variation 被引量:2
6
作者 Hu Yuqi Li Chunli 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2019年第2期118-124,共7页
This paper investigates the thermal-coupled effect across the wall and the optimal heat transfer region of the wall for enhancing the energy saving effect of dividing wall column (DWC), and also studies the effects of... This paper investigates the thermal-coupled effect across the wall and the optimal heat transfer region of the wall for enhancing the energy saving effect of dividing wall column (DWC), and also studies the effects of feed thermal condition (q) and middle component composition of feed (cB) on the heat transfer process, the optimal heat transfer region, and the maximum heat transfer quantity across the wall. The simulation results show that the maximum heat transfer quantity across the wall and the potential for energy saving increase with the increase of q, while with the limitation of temperature difference across the wall, the beneficial heat transfer effect between certain range of stages, which are involved in the optimal heat transfer region, cannot be realized completely for a specific value of q. Besides, compared with q, a changing cB does not change the degree of realizing the beneficial heat transfer effect, but can bring about the variation of liquid split ratio (RL) and vapor split ratio (Rv). Thus, for achieving a maximum energy-saving effect of DWC, different q and cB need to find its own corresponding suitable heat transfer process across the wall. 展开更多
关键词 dividing WALL COLUMN heat transfer process thermal-coupled effect FEED PROPERTIES
下载PDF
Modeling Hydrothermal Transfer Processes in Permafrost Regions of Qinghai-Tibet Plateau in China 被引量:4
7
作者 HU Guojie ZHAO Lin +6 位作者 LI Ren WU Tonghua WU Xiaodong PANG Qiangqiang XIAO Yao QIAO Yongping SHI Jianzong 《Chinese Geographical Science》 SCIE CSCD 2015年第6期713-727,共15页
Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-syst... Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-system is applied in high-altitude permafrost regions and to model hydrothermal transfer processes in freeze-thaw cycles. Measured meteorological forcing and soil and vegetation properties are used in the CoupModel for the period from January 1, 2009 to December 31, 2012 at the Tanggula observation site in the Qinghai-Tibet Plateau. A 24-h time step is used in the model simulation. The results show that the simulated soil temperature and water content, as well as the frozen depth compare well with the measured data. The coefficient of determination (R2) is 0.97 for the mean soil temperature and 0.73 for the mean soil water content, respectively. The simulated soil heat flux at a depth of 0-20 cm is also consistent with the monitored data. An analysis is performed on the simulated hydrothermal transfer processes from the deep soil layer to the upper one during the freezing and thawing period. At the beginning of the freezing period, the water in the deep soil layer moves upward to the freezing front and releases heat during the freezing process. When the soil layer is completely frozen, there are no vertical water ex- changes between the soil layers, and the heat exchange process is controlled by the vertical soil temperature gradient. During the thaw- ing period, the downward heat process becomes more active due to increased incoming shortwave radiation at the ground surface. The melt water is quickly dissolved in the soil, and the soil water movement only changes in the shallow soil layer. Subsequently, the model was used to provide an evaluation of the potential response of the active layer to different scenarios of initial water content and climate warming at the Tanggula site. The results reveal that the soil water content and the organic layer provide protection against active layer deepening in summer, so climate warming will cause the permafrost active layer to become deeoer and permafrost degradation. 展开更多
关键词 PERMAFROST coupled heat and mass transfer model (CoupModel) soil temperature soil moisture hydrothermal processes active layer
下载PDF
Study on inhomogeneous cooling behavior of extruded profile with unequal and large thicknesses during quenching using thermo-mechanical coupling model 被引量:6
8
作者 Zhi-wen LIU Jie YI +3 位作者 Shi-kang LI Wen-jie NIE Luo-xing LI Guan WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第5期1211-1226,共16页
The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanica... The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°. 展开更多
关键词 aluminum profile unequal and large thicknesses water quenching heat transfer coefficient thermo-mechanical coupling model
下载PDF
Numerical Simulation of an Airfoil Electrothermal-Deicing-System in the Framework of a Coupled Moving-Boundary Method 被引量:3
9
作者 Miao Xin Guo Zhong Yihua Cao 《Fluid Dynamics & Materials Processing》 EI 2020年第6期1-30,共30页
A numerical method for the analysis of the electrothermal deicing system for an airfoil is developed taking into account mass and heat exchange at the moving boundary that separates the water film created due to dropl... A numerical method for the analysis of the electrothermal deicing system for an airfoil is developed taking into account mass and heat exchange at the moving boundary that separates the water film created due to droplet impingement and the ice accretion region.The method relies on a Eulerian approach(used to capture droplet dynamics)and an unsteady heat transfer model(specifically conceived for a multilayer electrothermal problem on the basis of the enthalpy theory and a phase-change correction approach).Through application of the continuous boundary condition for temperature and heat flux at the coupled movingboundary,several simulations of ice accretion,melting and shedding,runback water flow and refreezing phenomena during the electrothermal deicing process are conducted.Finally,the results are verified via comparison with experimental data.A rich set of data concerning the dynamic evolution of the distribution of surface temperature,water film height and ice shape is presented and critically discussed. 展开更多
关键词 Electrothermal deicing water film flow unsteady heat transfer ice recognition coupled moving-boundary ice shedding
下载PDF
Coupled Heat Transfer Simulation of the Spiral Water Wall in a Double Reheat Ultra-supercritical Boiler 被引量:2
10
作者 DONG Jiancong ZHOU Tuo +3 位作者 WU Xiaojiang ZHANG Jian FAN Haojie ZHANG Zhongxiao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2018年第6期592-601,共10页
This paper presented a coupled heat transfer model combining the combustion in the furnace and the ultra-supercritical(USC) heat transfer in the water wall tubes. The thermal analysis of the spiral water wall in a 100... This paper presented a coupled heat transfer model combining the combustion in the furnace and the ultra-supercritical(USC) heat transfer in the water wall tubes. The thermal analysis of the spiral water wall in a 1000 MW double reheat USC boiler was conducted by the coupled heat transfer simulations. The simulation results show that there are two peak heat flux regions on each wall of spiral water wall, where the primary combustion zone and burnt-out zone locate respectively. In the full load condition, the maximal heat flux of the primary combustion zone is close to 500 kW/m^2, which is higher than that in the conventional single reheat USC boilers. The heat flux along the furnace width presents a parabolic shape that the values in the furnace center are much higher than that in the corner regions. The distribution of water wall temperature has a perfect accordance with the heat flux distribution of the parabolic shape curves, which can illustrate the distribution of water wall temperature is mainly determined by heat flux on the water wall. The maximal water wall temperature occurs at the middle width of furnace wall and approaches 530°C, which can be allowed by the metal material of water wall tube 12Cr1MoVG. In the primary combustion zone, the wall temperatures in half load are almost close to the values in 75% load condition, caused by the heat transfer deterioration of the subcritical pressure fluid under the high heat flux condition. The simulation results in this study are beneficial to the better design and operational optimization for the double reheat USC boilers. 展开更多
关键词 coupled model heat transfer spiral water wall double reheat ULTRA-SUPERCRITICAL
原文传递
土壤冻融过程中的水热参数化方案研究进展
11
作者 侯雅 李伟平 左金清 《高原气象》 北大核心 2025年第1期1-15,共15页
冻土是陆地冰冻圈的重要组成部分,其冻融循环变化能够影响土壤结构、土壤水热传输以及土壤生物化学等过程,并通过陆-气相互作用影响局地甚至全球天气气候。因此,研究土壤冻融过程对冻土区人类生产生活和了解区域外天气气候变化具有重要... 冻土是陆地冰冻圈的重要组成部分,其冻融循环变化能够影响土壤结构、土壤水热传输以及土壤生物化学等过程,并通过陆-气相互作用影响局地甚至全球天气气候。因此,研究土壤冻融过程对冻土区人类生产生活和了解区域外天气气候变化具有重要的科学意义。本文回顾了土壤中的砾石、有机质对土壤冻融过程的影响及物理机制,总结了土壤冻融过程中水热参数化的相关研究成果,包括土壤导热率和水力学参数的计算、水热耦合方案以及冻融锋面计算方案等。相对于普通的矿物质土粒而言,砾石具有高导热率和低热容,有机质具有低导热率和高热容,他们对热量在土壤中的传输及土壤温度垂直分布有不同的影响。另外,砾石和有机质的存在改变了土壤孔隙度、土壤基质毛细作用与吸附作用,进而影响水分在土壤中的传输过程和垂直分布。已有研究表明:(1)当前大部分数值模式中土壤导热率采用Johansen方案及其派生方案进行计算,其中Balland-Arp方案考虑了砾石和有机质对土壤导热率的影响,该方案更好地刻画了土壤冻融过程中土壤导热率变化的连续性;综合考虑热-水-变形相互作用的导热率参数化方案可以较好地刻画土壤冻融过程中的水热耦合和土体冻胀的作用,对相变过程中土壤导热率变化特征的模拟更符合实际观测。(2)过冷水参数化方案刻画了土壤液态水在0℃以下存在的事实;相变温度方案描述了土壤相变温度低于0℃且不固定的事实;导水阻抗方案考虑了土壤冻结对土壤水分下渗的阻抗作用,改善了对冻土区水文过程的模拟效果。(3)土壤冻融过程伴随着水分的相变和能量的转化,水热耦合方案的发展能够较好地刻画土壤中热力-水文过程的协同变化特征,细化了对冻融过程中水分和能量相互作用的复杂物理机制的描述。(4)等温框架的数值模式通过模拟每层土壤中间深度的冻融过程代表该模式分层的整体特征,导致对冻融深度的严重高估或低估,尤其是对厚度较大的模式深层土壤,冻融锋面计算方案的提出和应用减小了这种模拟偏差。目前土壤冻融参数化方案的不足之处包括:绝大多数数值模式没有考虑土壤盐分导致土壤水的冰点降低这一事实;虽然大部分数值模式考虑了土壤有机质对土壤水、热传输的影响,但是模式中对土壤有机质含量及垂直分布的考虑与植被根系的生长状态脱节;模式模拟的土壤深度不足并且下边界通量为零的假定不符合实际情况。发展土壤溶质传输参数化方案以模拟盐分的分布、刻画植被根系生长过程和土壤有机质的分布特征、考虑深层土壤对浅层的热力学影响并完善数值模式中的下边界条件,这些是未来陆面模式改进土壤冻融过程模拟的可能方向。 展开更多
关键词 土壤冻融过程 参数化方案 土壤导热率 土壤水文参数 冻融锋 水热耦合
下载PDF
Mechanism of slope failure in loess terrains during spring thawing 被引量:1
12
作者 XU Jian WANG Zhang-quan +2 位作者 REN Jian-wei WANG Song-he JIN Long 《Journal of Mountain Science》 SCIE CSCD 2018年第4期845-858,共14页
Slope failure in loess terrains of Northern China during spring thawing period is closely related to the freeze-thaw cycling that surface soils inevitably experienced. Field surveys were carried out on natural and art... Slope failure in loess terrains of Northern China during spring thawing period is closely related to the freeze-thaw cycling that surface soils inevitably experienced. Field surveys were carried out on natural and artificial slopes in thirteen surveying sites located in the Northern Shaanxi, the center of Loess Plateau, covering five characteristic topographic features including tablelands, ridges, hills, gullies and valleys. Based on the scale that is involved in freeze-thaw cycling, the induced failures can be classified into three main modes, i.e., erosion, peeling and thaw collapse, depending on both high porosity and loose cementation of loess that is easily affected. Model tests on loess slopes with gradients of 53.1°, 45.0° and 33.7° were carried out to reveal the heat transfer, water migration and deformation during slope failure. The surface morphology of slopes was photographed, with flake shaped erosion and cracks noted. For three slope models, time histories for the thermal regime exhibit three obvious cycles of freeze and thaw andthe maximum frost depth develops downwards as freeze-thaw cycling proceeds. Soil water in the unfrozen domain beneath was migrated towards the slope surface, as can be noticed from the considerable change in the unfrozen water content, almost synchronous with the variation of temperature. The displacement in both vertical and horizontal directions varies over time and three obvious cycles can be traced. The residual displacement for each cycle tends to grow and the slopes with higher gradients are more sensitive to potentially sliding during freeze-thaw cycling. 展开更多
关键词 Freeze and thaw LOESS Slope failure water migration heat transfer
下载PDF
A coupled cryogenic thermo-hydro-mechanical model for frozen medium:Theory and implementation in FDEM
13
作者 Lei Sun Xuhai Tang +3 位作者 Kareem Ramzy Aboayanah Qi Zhao Quansheng Liu Giovanni Grasselli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2024年第11期4335-4353,共19页
This paper presents the development of a coupled modeling approach to simulate cryogenic thermo-hydro-mechanical(THM)processes associated with a freezing medium,which is then implemented in the combined finite-discret... This paper presents the development of a coupled modeling approach to simulate cryogenic thermo-hydro-mechanical(THM)processes associated with a freezing medium,which is then implemented in the combined finite-discrete element method code(FDEM)for multi-physics simulation.The governing equations are deduced based on energy and mass conservation,and static equilibrium equations,considering water/ice phase change,where the strong couplings between multi-fields are supplemented by critical coupling parameters(e.g.unfrozen water content,permeability,and thermal conductivity).The proposed model is validated against laboratory and field experiments.Results show that the cryogenic THM model can well predict the evolution of strongly coupled processes observed in frozen media(e.g.heat transfer,water migration,and frost heave deformation),while also capturing,as emergent properties of the model,important phenomena(e.g.latent heat,cryogenic suction,ice expansion and distinct three-zone distribution)caused by water/ice phase change at laboratory and field scales,which are difficult to be all revealed by existing THM models.The novel modeling framework presents a gateway to further understanding and predicting the multi-physical coupling behavior of frozen media in cold regions. 展开更多
关键词 Thermo-hydro-mechanical(THM)coupling Low temperature heat transfer water migration Frost heave Combined finite-discrete element method(FDEM)
下载PDF
PTC水暖加热系统流固耦合传热研究
14
作者 杨朝阳 任经纬 李楚琳 《汽车零部件》 2024年第6期44-49,共6页
电动汽车的PTC水暖加热系统主要作用是在低温环境下加热液体传热介质为车辆提供热能,使电机和电池等关键部件能够正常运行并为乘员舱提供热源。对某型商用车PTC水暖加热系统进行流固耦合传热分析,建立流固耦合传热分析模型,在不同工况... 电动汽车的PTC水暖加热系统主要作用是在低温环境下加热液体传热介质为车辆提供热能,使电机和电池等关键部件能够正常运行并为乘员舱提供热源。对某型商用车PTC水暖加热系统进行流固耦合传热分析,建立流固耦合传热分析模型,在不同工况下仿真计算。最后将试验结果与仿真结果进行了对比分析,仿真结果与试验结果吻合,该PTC水暖加热系统满足温度和流阻的各项设计要求,为PTC水暖加热系统的结构设计提供了参考。 展开更多
关键词 PTC水暖加热系统 流固耦合 传热分析
下载PDF
Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau 被引量:35
15
作者 Lin Zhao Guodong Cheng +2 位作者 Shuxun Li Xinmin Zhao Shaoling Wang 《Chinese Science Bulletin》 SCIE EI CAS 2000年第23期2181-2187,共7页
The interaction between permafrost and atmosphere is accomplished through transfer of heat and moisture in the overlay active layer. Thus, the research on the thermal and hydrodynamics of active layer during the thawi... The interaction between permafrost and atmosphere is accomplished through transfer of heat and moisture in the overlay active layer. Thus, the research on the thermal and hydrodynamics of active layer during the thawing and freezing processes was considered a key to revealing the heat and moisture exchanges between permafrost and atmosphere. The monitoring and research on active layer were conducted because permafrost occupies about two thirds of the total area of the Tibetan Plateau. Based on the analysis of the ground temperature data and soil moisture data of monitoring near the Wudaoliang region of the Tibetan Plateau, the thawing and freezing processes of active layer were divided into four stages, i.e. summer thawing stage (ST), autumn freezing stage (AF), winter cooling stage (WC) and spring warming stage (SW). Coupled heat and water flow is much more complicated in ST and AF, and more amount of water is migrating in these two stages. Heat is transferred mainly via conductive heat flow in the 展开更多
关键词 active LAYER FREEZING process water and heat couple.
原文传递
基于数据驱动的锅炉水冷壁壁温分布实时预测模型
16
作者 闫靖文 刘欣 +6 位作者 王光礼 张文振 李明 金东昊 李驰 李新颖 王赫阳 《煤炭学报》 EI CAS CSCD 北大核心 2024年第10期4117-4126,共10页
水冷壁等高温受热面超温及由此导致的爆管事故是影响燃煤发电机组安全运行的痛点问题之一。管壁超温一般发生在锅炉受热面局部区域,为预测并缓解超温问题,就必须实时监测受热面壁温的详细分布,并做出针对性调整。由于测量手段受限且CFD... 水冷壁等高温受热面超温及由此导致的爆管事故是影响燃煤发电机组安全运行的痛点问题之一。管壁超温一般发生在锅炉受热面局部区域,为预测并缓解超温问题,就必须实时监测受热面壁温的详细分布,并做出针对性调整。由于测量手段受限且CFD数值模拟方法耗时较长,目前仍缺少一种能实时、准确地反映锅炉运行过程中壁温详细分布的技术手段。为此采用将耦合传热模型与人工神经网络相结合的方法。以某350 MW超临界对冲燃烧锅炉为研究对象,首先以壁温耦合传热预测模型为基础,通过改变耦合模型的46个锅炉关键运行参数,生成220个典型工况,并通过快速扩充方法以极低时间成本衍生出4400个扩充工况。然后,基于典型工况与扩充工况组成的综合数据库,以锅炉的46项运行参数及壁面坐标为输入,以对应位置的壁温为输出,构建深度学习模型。模型MSE误差仅为0.0053,准确率AUC5为0.988,且计算时长在0.1 s以内。结果表明,提出的基于数据驱动的水冷壁壁温分布预测模型通过泛化有限工况的数值模拟结果,实现了锅炉全工况下水冷壁管壁温度详细分布的实时预测,且针对模型在低负荷工况时难以准确预测传热恶化的问题,提出快速扩充数据库的方法,以极低时间成本明显提高模型对传热恶化问题的预测准确率。 展开更多
关键词 水冷壁 管壁温度 耦合传热模型 超临界锅炉 人工神经网络
下载PDF
液态金属快堆螺旋管蒸汽发生器一、二次侧耦合传热数值研究
17
作者 刘佳伦 宁亮 +3 位作者 林金鹏 辛杰 李敏 李会雄 《核技术》 EI CAS CSCD 北大核心 2024年第9期151-162,共12页
螺旋管蒸汽发生器是液态金属快堆中能量传递的核心设备,其运行的稳定性、安全性对核电站的运行有至关重要的影响。为此,本文构建了液态金属快堆螺旋管蒸汽发生器一次侧、二次侧耦合传热的三维数值模型,分别基于经济合作与发展组织核能署... 螺旋管蒸汽发生器是液态金属快堆中能量传递的核心设备,其运行的稳定性、安全性对核电站的运行有至关重要的影响。为此,本文构建了液态金属快堆螺旋管蒸汽发生器一次侧、二次侧耦合传热的三维数值模型,分别基于经济合作与发展组织核能署(The Organisation for Economic Co-operation and Development,OECD/NEA)物性手册和美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)数据库建立液态金属和水-水蒸气变物性计算关联式,采用Lee相变模型计算二次侧水-水蒸气蒸发过程中两相间的质量传递。基于实验数据,分别对本文模型一次侧传热以及二次侧传热的计算可靠性进行了验证。最后以铅铋快堆为例,研究了不同一次侧进口参数下蒸汽发生器一、二次侧之间的耦合传热特性,并与传统水冷堆进行了对比。结果表明:在同等条件下,相比于传统水冷堆,一次侧采用铅铋液态金属时,一、二次侧之间的壁面热流密度明显提升,热流密度峰值可达1439.97 kW·m^(-2),比水冷堆相应数值提升5~6倍,这导致二次侧管内气相蒸发过程明显加剧,体积含气率急剧上升;同时,一、二次侧之间的沿程热流密度分布更加不均匀,沿程热流密度分布相对偏差值比水冷堆相应数值增大3~4倍。随着一次侧进口铅铋温度从350℃增大到450℃,一、二次侧之间的壁面热流密度随之增大,对应的热流密度峰值从950.7 kW·m^(-2)增大到1439.97 kW·m^(-2),提升约1.5倍,同时一、二次侧之间的沿程热流密度分布更加不均匀,不均匀度增大20%。 展开更多
关键词 液态金属快堆 螺旋管蒸汽发生器 三维耦合传热模型 水-水蒸气两相流 沸腾相变
下载PDF
深水海底管道软管内部流体渗透特性模型与试验研究
18
作者 李焱 郑利军 +1 位作者 张恩勇 王云飞 《化工学报》 EI CSCD 北大核心 2024年第S01期118-125,共8页
深水油气输送软管是深水油气田开发工程重要的设施,准确模拟气体渗透冷凝的动态过程是关乎软管设计是否安全可靠的关键技术之一。以我国海上某油田深水软管为研究对象,开展深水油气输送软管内部复杂气体CH4、CO_(2)、H2S和气相水等渗透... 深水油气输送软管是深水油气田开发工程重要的设施,准确模拟气体渗透冷凝的动态过程是关乎软管设计是否安全可靠的关键技术之一。以我国海上某油田深水软管为研究对象,开展深水油气输送软管内部复杂气体CH4、CO_(2)、H2S和气相水等渗透规律研究,考虑高分子聚合物密封材料、厚度、气体压力、温度、流速、软管界面结构形式等不同影响软管渗透性的因素,将软管几何模型划分为管内流体、管道结构和环空三个空间,建立复合柔性软管多相流动传热传质耦合计算模型,并进行了实验室规模的材料和样管实验,原型管道试验以及平台现场测试,其中模型结果与样管实验最大误差为7%,与原型管道试验结果最大误差为12.3%,计算模型与现场运行结果趋势规律一致,很好地为深水软管设计以及软管安全运行管理提供技术支持。 展开更多
关键词 深水海底管道 多相流动传热传质耦合 渗透模型
下载PDF
建筑材料水蒸气渗透系数实验研究 被引量:27
19
作者 李魁山 张旭 +1 位作者 韩星 朱东明 《建筑材料学报》 EI CAS CSCD 北大核心 2009年第3期288-291,共4页
为了研究建筑材料的热湿物性参数,根据ASTM标准和GB/T 17146—1997设计实验,测试了膨胀聚苯乙烯(EPS),挤塑聚苯乙烯(XPS)和聚氨酯(PU)这3种常用建筑保温材料和水泥砂浆、混凝土、多孔粘土砖等建筑材料在不同相对湿度条件下的水蒸... 为了研究建筑材料的热湿物性参数,根据ASTM标准和GB/T 17146—1997设计实验,测试了膨胀聚苯乙烯(EPS),挤塑聚苯乙烯(XPS)和聚氨酯(PU)这3种常用建筑保温材料和水泥砂浆、混凝土、多孔粘土砖等建筑材料在不同相对湿度条件下的水蒸气渗透系数(相对湿度覆盖范围为11.3%~97.3%).将实验数据进行最小二乘拟合,所得到的拟合公式适用的相对湿度范围为0~100%,可用于建筑围护结构的热、湿传递计算. 展开更多
关键词 水蒸气渗透系数 热湿传递 透湿率 保温材料
下载PDF
柴油机缸盖水腔流动与沸腾传热的流固耦合数值模拟 被引量:22
20
作者 傅松 胡玉平 +3 位作者 李新才 陈志忠 李国祥 潘继红 《农业机械学报》 EI CAS CSCD 北大核心 2010年第4期26-30,共5页
采用CFD软件STAR-CD和FEA软件ABAQUS对226B型柴油机缸盖冷却水腔内的流动和传热过程进行了流固耦合数值模拟计算。为反映沸腾传热的影响,基于FORTRAN语言开发了单相流沸腾传热模型,将其嵌入到STAR-CD中。与试验结果的比较表明,加入沸腾... 采用CFD软件STAR-CD和FEA软件ABAQUS对226B型柴油机缸盖冷却水腔内的流动和传热过程进行了流固耦合数值模拟计算。为反映沸腾传热的影响,基于FORTRAN语言开发了单相流沸腾传热模型,将其嵌入到STAR-CD中。与试验结果的比较表明,加入沸腾传热模型可以大幅度提高模拟计算的精度,最大误差由18%下降至7%,为柴油机冷却水腔的优化设计提供了理论依据。 展开更多
关键词 气缸盖 冷却水腔 沸腾传热 流固耦合 数值模拟
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部