The electronic structures of coupled quantum dots grown on (11N)-oriented substrates are studied in the framework of effective-mass envelope-function theory. The results show that the all-hole subbands have the smal...The electronic structures of coupled quantum dots grown on (11N)-oriented substrates are studied in the framework of effective-mass envelope-function theory. The results show that the all-hole subbands have the smallest widths and the optical properties are best for the (113), (114), and (115) growth directions. Our theoretical results agree with the available experimental data. Our calculated results are useful for the application of coupled quantum dots in photoelectric devices.展开更多
We have studied the far-infrared spectra of two-electron vertically coupled quantum dots in an axial magnetic field by exact diagonalization. The calculated results show an obvious difference in role between the inter...We have studied the far-infrared spectra of two-electron vertically coupled quantum dots in an axial magnetic field by exact diagonalization. The calculated results show an obvious difference in role between the interactions for spin S = 1 and for spin S = O. The results support the possibility to evaluate the interactions by far-infrared spectroscopy in vertically coupled quantum dots.展开更多
We theoretically study the spin properties of two interacting electrons confined in the IhAs parallel coupled quantum dots (CQDs) with spin-orbit interactions (SOI) by exact diagonalization method. Through the SOI...We theoretically study the spin properties of two interacting electrons confined in the IhAs parallel coupled quantum dots (CQDs) with spin-orbit interactions (SOI) by exact diagonalization method. Through the SOI induced spin mixing of the singlet and the triplet states, we show the different spin properties for the weak and strong SOI. We investigate the coherent singlet-triplet spin oscillations of the two electrons under the SOI, and demonstrate the detailed behaviors of the spin oscillations depending on the SOI strengths, the inter-dot separations and the external magnetic fields. To better understand the underlying physics of the spin dynamics, we introduce a four-level model Hamiltonian for both weak and strong SOI, and find that the SOI induced in plane effective magnetic fields can be quantitatively extracted from the two-electron excitation energy spectra.展开更多
We study theoretically the essential properties of an exciton in vertically coupled Gaussian quantum dots in the presence of an external magnetic field. The ground state energy of a heavy-hole exciton is split into fo...We study theoretically the essential properties of an exciton in vertically coupled Gaussian quantum dots in the presence of an external magnetic field. The ground state energy of a heavy-hole exciton is split into four energy levels due to the Zeeman effect. For the symmetrical system, the entanglement entropy of the exciton state can reach a value of 1. However, for a system with broken symmetry, it is close to zero. Our results are in good agreement with previous studies.展开更多
We study the effect of structure asymmetry on the energy spectrum and the far-infrared spectrum (FIR) of a lateral coupled quantum dot. The calculated spectrum shows that the parity break of coupled quantum dot resu...We study the effect of structure asymmetry on the energy spectrum and the far-infrared spectrum (FIR) of a lateral coupled quantum dot. The calculated spectrum shows that the parity break of coupled quantum dot results in more coherent superpositions in the low-lying states and exhibits unique anti-crossing in the two-electron FIR spectrum modulated by a magnetic field. We also find that the Coulomb correlation effect can make the FIR spectrum of coupled quantum dot without strict parity deviate greatly from Kohn theorem, which is just contrary to the symmetric case. Our results therefore suggest that FIR spectrum may be used to determine the symmetry of coupled quantum dot and to evaluate the degree of Coulomb interaction.展开更多
Based on coupled quantum dots, we present an interesting optical effect in a four-level loop coupled system. Both the two upper levels and the two lower levels are designed to be almost degenerate, which induces a con...Based on coupled quantum dots, we present an interesting optical effect in a four-level loop coupled system. Both the two upper levels and the two lower levels are designed to be almost degenerate, which induces a considerable dipole moment. The terahertz wave is obtained from the low-frequency component of the photon emission spectrum. The frequency of the terahertz wave can be controlled by tuning the energy levels via designing the nanostructure appropriately or tuning the driving laser field. A terahertz wave with adjustable frequency and considerable intensity (100 times higher than that of the Rayleigh line) can be obtained. It provides an effective scheme for a terahertz source.展开更多
We study the controlling of the Goos-Hanchen (GH) shifts in reflected and transmitted light beams in the triple coupled InGaAs/GaAs quantum dot (QD) nanostructures with electron tunneling and incoherent pumping fi...We study the controlling of the Goos-Hanchen (GH) shifts in reflected and transmitted light beams in the triple coupled InGaAs/GaAs quantum dot (QD) nanostructures with electron tunneling and incoherent pumping field. It is shown that the lateral shift can become either large negative or large positive, which can be controlled by the electron tunneling and the rate of incoherent pump field in different incident angles. It is also demonstrated that the properties of the OH shifts are strongly dependent on the probe absorption beam of the intracavity medium due to the switching from superluminal light propagation to subluminal behavior or vice versa. Our suggested system can be considered as a new theoretical method for developing a new nano-optoelectronic sensor.展开更多
The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four ...The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four possible ports for an incident single photon. The quantum dot is considered a V-type system. The incident direction-dependent single photon scattering properties are studied and equal-output probability from the four ports for a single photon incident is discussed. The influences of backscattering between the two modes of the whispering-gallery resonator for incident direction-dependent single photon scattering properties are also pre- sented.展开更多
Quantum-state engineering, i.e. active manipulation over the coherent dynamics of suitable quantum-mechanical systems, has become a fascinating prospect of modern physics. Here we discuss the dynamics of two interacti...Quantum-state engineering, i.e. active manipulation over the coherent dynamics of suitable quantum-mechanical systems, has become a fascinating prospect of modern physics. Here we discuss the dynamics of two interacting electrons in a coupled quantum dot driven by an external electric field. The results show that the two quantum dots can be used to prepare a maximally entangled Bell state by changing the strength and duration of an oscillatory electric field. Different from the suggestion made by Loss et al (1998 Phys. Rev. A 57 120), the present entanglement involves the spatial degree of freedom for the two electrons. We also find that the coherent tunnelling suppression discussed by Grossmann et al (1991 Phys. Rev. Lett. 67 516) persists in the two-particle case: i.e. two electrons initially localized in one dot can remain dynamically localized, although the strong Coulomb repulsion prevents them from behaving so. Surprisingly, the interaction enhances the degree of localization to a large extent compared with that in the non-interacting case. This phenomenon is referred to as the Coulomb-enhanced dynamical localization.展开更多
Based on a calculation model, we study the interference phenomena of serially coupled ∨-type and ∧-type triple quantum dots (CTQDs) driven simultaneously by a strong driving field and a weak probe field. Strongly ...Based on a calculation model, we study the interference phenomena of serially coupled ∨-type and ∧-type triple quantum dots (CTQDs) driven simultaneously by a strong driving field and a weak probe field. Strongly depending on the configuration of the three-level CTQD, the probe absorption spectra, which are shown in the tunneling current, exhibit various quantum coherence properties. In the case where the two pairs of transitions of the CTQD have a small eigenfrequency difference △ω, the double-coupling effect of the driving field results in two Autler Townes doublets and one weak Mollow triplet in one spectrum. With the value of △ω increasing, only one Autler-Townes splitting remains due to the single-coupling of the field. We also find that the effect of spontaneous emission of phonons may lead to an obvious background current, which can be used to distinguish which transition is driven by the driving field in experiment. The interesting quantum property of a CTQD revealed in our results suggests its potential applications in quantum modulators and quantum logic devices.展开更多
Excited states of lnAs quantum dots (QDs) can be energetically coupled with the confined level of OaAs quantum wells (QWs) in a thin-barrier resonant tunneling diode (RTD). Single charge variation in the coupled...Excited states of lnAs quantum dots (QDs) can be energetically coupled with the confined level of OaAs quantum wells (QWs) in a thin-barrier resonant tunneling diode (RTD). Single charge variation in the coupled QD can effectively switch on/off the resonant tunneling current passing through RTD, not only for emcient single-photon detection but also for photon-number-resolving detection. We present the study of the Q,D-QW coupling effect in the quantum dot coupled resonant tunneling diode (QD-cRTD) and figure out important factors for further improving the detector performance.展开更多
Photoluminescence(PL)was investigated as functions of the excitation intensity and temperature for a coupling surface quantum dots(SQDs)structure which consists of one In_(0.3)Ga_(0.7)As SQDs layer being stacked on mu...Photoluminescence(PL)was investigated as functions of the excitation intensity and temperature for a coupling surface quantum dots(SQDs)structure which consists of one In_(0.3)Ga_(0.7)As SQDs layer being stacked on multi-layers of In_(0.3)Ga_(0.7)As buried quantum dots(BQDs).Accompanied by considering the localized excitons effect induced by interface fluctuation,carrier transition between BQDs and SQDs were analyzed carefully.The PL measurements confirm that there is a strong carrier transition from BQDs to SQDs and this transition leads to obvious different PL characteristics between BQDs and SQDs.These results are useful for future application of SQDs as surface sensitive sensors.展开更多
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos 60521001 and 60325416).
文摘The electronic structures of coupled quantum dots grown on (11N)-oriented substrates are studied in the framework of effective-mass envelope-function theory. The results show that the all-hole subbands have the smallest widths and the optical properties are best for the (113), (114), and (115) growth directions. Our theoretical results agree with the available experimental data. Our calculated results are useful for the application of coupled quantum dots in photoelectric devices.
基金Project supported by the National Natural Science Foundation of China (Grant No 10674084)
文摘We have studied the far-infrared spectra of two-electron vertically coupled quantum dots in an axial magnetic field by exact diagonalization. The calculated results show an obvious difference in role between the interactions for spin S = 1 and for spin S = O. The results support the possibility to evaluate the interactions by far-infrared spectroscopy in vertically coupled quantum dots.
基金Supported by Natural Science Foundation of China under Grant Nos. 10574077 and 10774085the "863" Programme of China under Grant No. 2006AA03Z0404MOST Programme of China under Grant Nos. 2006AA03Z0404 and 2006CBOL0601
文摘We theoretically study the spin properties of two interacting electrons confined in the IhAs parallel coupled quantum dots (CQDs) with spin-orbit interactions (SOI) by exact diagonalization method. Through the SOI induced spin mixing of the singlet and the triplet states, we show the different spin properties for the weak and strong SOI. We investigate the coherent singlet-triplet spin oscillations of the two electrons under the SOI, and demonstrate the detailed behaviors of the spin oscillations depending on the SOI strengths, the inter-dot separations and the external magnetic fields. To better understand the underlying physics of the spin dynamics, we introduce a four-level model Hamiltonian for both weak and strong SOI, and find that the SOI induced in plane effective magnetic fields can be quantitatively extracted from the two-electron excitation energy spectra.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61176089 and 10905016)the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011205092 and A2011208010)
文摘We study theoretically the essential properties of an exciton in vertically coupled Gaussian quantum dots in the presence of an external magnetic field. The ground state energy of a heavy-hole exciton is split into four energy levels due to the Zeeman effect. For the symmetrical system, the entanglement entropy of the exciton state can reach a value of 1. However, for a system with broken symmetry, it is close to zero. Our results are in good agreement with previous studies.
基金supported by the National Natural Science Foundation of China (Grant No.11074025)the National Basic Research Program of China (Grant No.2011CB922200)a grant from the China Academy of Engineering Physics
文摘We study the effect of structure asymmetry on the energy spectrum and the far-infrared spectrum (FIR) of a lateral coupled quantum dot. The calculated spectrum shows that the parity break of coupled quantum dot results in more coherent superpositions in the low-lying states and exhibits unique anti-crossing in the two-electron FIR spectrum modulated by a magnetic field. We also find that the Coulomb correlation effect can make the FIR spectrum of coupled quantum dot without strict parity deviate greatly from Kohn theorem, which is just contrary to the symmetric case. Our results therefore suggest that FIR spectrum may be used to determine the symmetry of coupled quantum dot and to evaluate the degree of Coulomb interaction.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10874020 and 11074025)the National Basic Research Program of China (Grant No. 2011CB922204)
文摘Based on coupled quantum dots, we present an interesting optical effect in a four-level loop coupled system. Both the two upper levels and the two lower levels are designed to be almost degenerate, which induces a considerable dipole moment. The terahertz wave is obtained from the low-frequency component of the photon emission spectrum. The frequency of the terahertz wave can be controlled by tuning the energy levels via designing the nanostructure appropriately or tuning the driving laser field. A terahertz wave with adjustable frequency and considerable intensity (100 times higher than that of the Rayleigh line) can be obtained. It provides an effective scheme for a terahertz source.
文摘We study the controlling of the Goos-Hanchen (GH) shifts in reflected and transmitted light beams in the triple coupled InGaAs/GaAs quantum dot (QD) nanostructures with electron tunneling and incoherent pumping field. It is shown that the lateral shift can become either large negative or large positive, which can be controlled by the electron tunneling and the rate of incoherent pump field in different incident angles. It is also demonstrated that the properties of the OH shifts are strongly dependent on the probe absorption beam of the intracavity medium due to the switching from superluminal light propagation to subluminal behavior or vice versa. Our suggested system can be considered as a new theoretical method for developing a new nano-optoelectronic sensor.
基金Supported by the National Natural Science Foundation of China under Grant No 11105001the Anhui Provincial Natural Science Foundation under Grant Nos 1408085QA22 and 1608085MA09
文摘The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four possible ports for an incident single photon. The quantum dot is considered a V-type system. The incident direction-dependent single photon scattering properties are studied and equal-output probability from the four ports for a single photon incident is discussed. The influences of backscattering between the two modes of the whispering-gallery resonator for incident direction-dependent single photon scattering properties are also pre- sented.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos 10544004 and 10574017).
文摘Quantum-state engineering, i.e. active manipulation over the coherent dynamics of suitable quantum-mechanical systems, has become a fascinating prospect of modern physics. Here we discuss the dynamics of two interacting electrons in a coupled quantum dot driven by an external electric field. The results show that the two quantum dots can be used to prepare a maximally entangled Bell state by changing the strength and duration of an oscillatory electric field. Different from the suggestion made by Loss et al (1998 Phys. Rev. A 57 120), the present entanglement involves the spatial degree of freedom for the two electrons. We also find that the coherent tunnelling suppression discussed by Grossmann et al (1991 Phys. Rev. Lett. 67 516) persists in the two-particle case: i.e. two electrons initially localized in one dot can remain dynamically localized, although the strong Coulomb repulsion prevents them from behaving so. Surprisingly, the interaction enhances the degree of localization to a large extent compared with that in the non-interacting case. This phenomenon is referred to as the Coulomb-enhanced dynamical localization.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774016)
文摘Based on a calculation model, we study the interference phenomena of serially coupled ∨-type and ∧-type triple quantum dots (CTQDs) driven simultaneously by a strong driving field and a weak probe field. Strongly depending on the configuration of the three-level CTQD, the probe absorption spectra, which are shown in the tunneling current, exhibit various quantum coherence properties. In the case where the two pairs of transitions of the CTQD have a small eigenfrequency difference △ω, the double-coupling effect of the driving field results in two Autler Townes doublets and one weak Mollow triplet in one spectrum. With the value of △ω increasing, only one Autler-Townes splitting remains due to the single-coupling of the field. We also find that the effect of spontaneous emission of phonons may lead to an obvious background current, which can be used to distinguish which transition is driven by the driving field in experiment. The interesting quantum property of a CTQD revealed in our results suggests its potential applications in quantum modulators and quantum logic devices.
基金Supported by the National Basic Research Program of China under Grant No 2011CB925600the National Natural Science Foundation of China under Grant Nos 11427807,91321311,10990100,11174057 and 61106092the Shanghai Science and Technology Committee under Grant No 14JC1406600
文摘Excited states of lnAs quantum dots (QDs) can be energetically coupled with the confined level of OaAs quantum wells (QWs) in a thin-barrier resonant tunneling diode (RTD). Single charge variation in the coupled QD can effectively switch on/off the resonant tunneling current passing through RTD, not only for emcient single-photon detection but also for photon-number-resolving detection. We present the study of the Q,D-QW coupling effect in the quantum dot coupled resonant tunneling diode (QD-cRTD) and figure out important factors for further improving the detector performance.
基金supported by the National Natural Science Foundation of China(Nos.U1304608 and 61774053)the Project of Henan Provincial Department of Science and Technology(No.182102410047)the Program of Henan Polytechnic University(No.B2014-020)。
文摘Photoluminescence(PL)was investigated as functions of the excitation intensity and temperature for a coupling surface quantum dots(SQDs)structure which consists of one In_(0.3)Ga_(0.7)As SQDs layer being stacked on multi-layers of In_(0.3)Ga_(0.7)As buried quantum dots(BQDs).Accompanied by considering the localized excitons effect induced by interface fluctuation,carrier transition between BQDs and SQDs were analyzed carefully.The PL measurements confirm that there is a strong carrier transition from BQDs to SQDs and this transition leads to obvious different PL characteristics between BQDs and SQDs.These results are useful for future application of SQDs as surface sensitive sensors.