A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convecti...A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convection to simulate heat transfer in the furnace.A two-dimensional recirculation model is proposed to estimate the flow field in furnace.The reactor model integrates the feedstock reconstruction model,an auto-generator of detail kinetic schemes,and the reactor simulation model to simulate the reaction process in the tubular coil.The coupled simulation result is compared with industrial process and shows agreement within short computation time.展开更多
Reverse-swirl(RS)burner which has been industrialized couples reverses jet and swirl flow for the stabilization of flame.Using Dantec multichannel constant-temperature anemometer,experiments on airflow characteristics...Reverse-swirl(RS)burner which has been industrialized couples reverses jet and swirl flow for the stabilization of flame.Using Dantec multichannel constant-temperature anemometer,experiments on airflow characteristics were implemented on a 1:2 scaled burner model with different values in terms of reverse primary air(RPA)ratio and swirl inner secondary air(SISA)ratio.It was found that the shape of annular coupled recirculation zone(ACRZ)had stayed symmetrical all the time.The RPA ratio was the main factor that had an impact on the values of axial and RMS velocity as well as the radial velocity direction of ACRZ.Both RPA ratio and SISA ratio had a great impact on the area of ACRZ,relative reverse flow rate,mixing between SISA and outer secondary air(OSA)as well as swirling ability of the airflow.The area of ACRZ reached its peak when the RPA ratio was 11.92%or SISA ratio was 17.03%;however,when the RPA ratio and SISA ratio reached 14.86%and 28.41%respectively,the combination of RPA and SISA became relatively favorable;besides,ACRZ area,relative reverse flow and swirling ability became suitable and the mixing between SISA and OSA was relatively delayed.The research was of great practical and theoretical importance to the design and operation of RS burner.展开更多
基金Supported by the National Natural Science Foundation of China(U1462206)
文摘A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convection to simulate heat transfer in the furnace.A two-dimensional recirculation model is proposed to estimate the flow field in furnace.The reactor model integrates the feedstock reconstruction model,an auto-generator of detail kinetic schemes,and the reactor simulation model to simulate the reaction process in the tubular coil.The coupled simulation result is compared with industrial process and shows agreement within short computation time.
基金China Coal Research Institute Company of Energy Conservation Project(No.11021-ZC)for the support to our research.
文摘Reverse-swirl(RS)burner which has been industrialized couples reverses jet and swirl flow for the stabilization of flame.Using Dantec multichannel constant-temperature anemometer,experiments on airflow characteristics were implemented on a 1:2 scaled burner model with different values in terms of reverse primary air(RPA)ratio and swirl inner secondary air(SISA)ratio.It was found that the shape of annular coupled recirculation zone(ACRZ)had stayed symmetrical all the time.The RPA ratio was the main factor that had an impact on the values of axial and RMS velocity as well as the radial velocity direction of ACRZ.Both RPA ratio and SISA ratio had a great impact on the area of ACRZ,relative reverse flow rate,mixing between SISA and outer secondary air(OSA)as well as swirling ability of the airflow.The area of ACRZ reached its peak when the RPA ratio was 11.92%or SISA ratio was 17.03%;however,when the RPA ratio and SISA ratio reached 14.86%and 28.41%respectively,the combination of RPA and SISA became relatively favorable;besides,ACRZ area,relative reverse flow and swirling ability became suitable and the mixing between SISA and OSA was relatively delayed.The research was of great practical and theoretical importance to the design and operation of RS burner.