期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Combined resonance of low pressure cylinder-generator rotor system with bending-torsion coupling
1
作者 李军 陈予恕 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第8期957-972,共16页
A nonlinear model of a low pressure cylinder-generator rotor system is presented to study sub-synchronous resonance and combined resonance. Analytical results are obtained by an averaging method. Transition sets and b... A nonlinear model of a low pressure cylinder-generator rotor system is presented to study sub-synchronous resonance and combined resonance. Analytical results are obtained by an averaging method. Transition sets and bifurcation diagrams are obtained based on the singularity theory for the two-state variable system. The bifurcation characteristics are analyzed to provide a basis for the optimal design and fault diagnosis of the rotor system. Finally, the theoretical results are verified with the numerical results. 展开更多
关键词 bending-torsion coupling vibration of rotor system sub-synchronous resonance nonlinear dynamics of rotor combined resonance of bending-torsion coupling vibration
下载PDF
Nonlinear aeroelastic coupled trim and stability analysis of rotor-fuselage
2
作者 胡新宇 韩景龙 喻梅 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第2期237-246,共10页
Based on the Hamilton principle and the moderate deflection beam theory, discretizing the helicopter blade into a number of beam elements with 15 degrees of freedora, and using a quasi-steady aero-model, a nonlinear c... Based on the Hamilton principle and the moderate deflection beam theory, discretizing the helicopter blade into a number of beam elements with 15 degrees of freedora, and using a quasi-steady aero-model, a nonlinear coupled rotor/fuselage equation is established. A periodic solution of blades and fuselage is obtained through aeroelastic coupled trim using the temporal finite element method (TEM). The Peters dynamic inflow model is used for vehicle stability. A program for computation is developed, which produces the blade responses, hub loads, and rotor pitch controls. The correlation between the analytical results and related literature is good. The converged solution simultaneously satisfies the blade and the vehicle equilibrium equations. 展开更多
关键词 NONLINEAR aeroelasticity rotor/fuselage coupling temporal finite elementmethod (TEM) stability
下载PDF
HIGHER ORDER SPECTRAL ANALYSIS IN FAULT DIAGNOSIS OF ROTORS 被引量:4
3
作者 Yang Jiangtian Xu Jinwu School of Mechanical Engineering, Beijing University of Sicence and Technology 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2001年第1期40-44,共5页
The nonlinear properties of rotating machinery vibration signals are presented. The relationship between faults and quadratic phase coupling is discussed. The mechanism that gives rise to quadratic phase coupling is a... The nonlinear properties of rotating machinery vibration signals are presented. The relationship between faults and quadratic phase coupling is discussed. The mechanism that gives rise to quadratic phase coupling is analyzed, and the coupling models are summarized. As a result, higher order spectra analysis is introduced into fault diagnosis of rotors. A brief review of the properties of higher order spectra is presented. Furthermore, the bicoherence spectrum is employed to extract the features that signify the machinery condition. Experiments show that bicoherence spectrum patterns of different faults are quite different, so it is proposed to identify the faults in rotors. 展开更多
关键词 rotor Fault diagnosis Quadratic phase coupling Higher order spectra Bicoherence spectrum
下载PDF
船用推进轴系统扭转和横向振动耦合效应
4
作者 Akile Nese Halilbese Cong Zhang Osman Azmi Ozsoysal 《Journal of Marine Science and Application》 CSCD 2021年第2期201-212,共12页
In this study,the coupled torsional-transverse vibration of a propeller shaft system owing to the misalignment caused by the shaft rotation was investigated.The proposed numerical model is based on the modified versio... In this study,the coupled torsional-transverse vibration of a propeller shaft system owing to the misalignment caused by the shaft rotation was investigated.The proposed numerical model is based on the modified version of the Jeffcott rotor model.The equation of motion describing the harmonic vibrations of the system was obtained using the Euler-Lagrange equations for the associated energy functional.Experiments considering different rotation speeds and axial loads acting on the propulsion shaft system were performed to verify the numerical model.The effects of system parameters such as shaft length and diameter,stiffness and damping coefficients,and cross-section eccentricity were also studied.The cross-section eccentricity increased the displacement response,yet coupled vibrations were not initially observed.With the increase in the eccentricity,the interaction between two vibration modes became apparent,and the agreement between numerical predictions and experimental measurements improved.Given the results,the modified version of the Jeffcott rotor model can represent the coupled torsional-transverse vibration of propulsion shaft systems. 展开更多
关键词 coupled torsional-transverse vibrations Forced vibrations Marine propulsion shaft system Cross-section eccentricity Jeffcott rotor coupled vibration in rotor system
下载PDF
A new vibration mechanism of balancing machine for satellite-borne spinning rotors 被引量:1
5
作者 Wang Qiuxiao Wang Fei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第5期1318-1326,共9页
The centrifugal force and overturning moment generated by satellite-borne rotating payload have a significant impact on the stability of on-orbit satellite attitude, which must be controlled to the qualified range. Fo... The centrifugal force and overturning moment generated by satellite-borne rotating payload have a significant impact on the stability of on-orbit satellite attitude, which must be controlled to the qualified range. For the satellite-borne rotors' low working revs and large centroidal deviation and height, and that the horizontal vibration produced by centrifugal force is not of the same magnitude as the torsional vibration by overturning moment, the balancing machine's measurement accuracy is low. Analysis shows that the mixture of horizontal vibration and torsional vibration of the vibrational mechanism contribute mainly to the machine's performance, as well as the instability of vibration center position. A vibrational mechanism was put forward, in which the horizontal and torsional vibration get separated effectively by way of fixing the vibration center. From experimental results, the separation between the weak centrifugal force signal and the strong moment signal was realized, errors caused by unstable vibration center are avoided, and the balancing machine based on this vibration structure is able to meet the requirements of dynamic balancing for the satellite's rotating payloads in terms of accuracy and stability. 展开更多
关键词 Rotational unbalance Satellite-borne rotor Separation of static unbalance and couple unbalance Vertical balancing machine Vibration measurement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部