期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Atmosphere-Ocean Coupling Schemes in a One-Dimensional Climate Model
1
作者 季劲钧 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1989年第3期275-288,共14页
In this paper, the coupling schemes of atmosphere-ocean climate models are discussed with one-dimensional advection equations. The convergence and stability for synchronous and asynchronous schemes are demonstrated an... In this paper, the coupling schemes of atmosphere-ocean climate models are discussed with one-dimensional advection equations. The convergence and stability for synchronous and asynchronous schemes are demonstrated and compared.Conclusions inferred from the analysis are given below. The synchronous scheme as well as the asynchronous-implicit scheme in this model are stable for arbitrary integrating time intervals. The asynchronous explicit scheme is unstable under certain conditions, which depend upon advection velocities and heat exchange parameters in the atmosphere and oceans. With both synchronous and asynchronous stable schemes the discrete solutions converge to their unique exact ones. Advections in the atmosphere and ocean accelerate the rate of convergence of the asynchronous-implicit scheme. It is suggusted that the asynchronous-implicit coupling scheme is a stable and efficient method for most climatic simulations. 展开更多
关键词 Atmosphere-Ocean Coupling schemes in a One-Dimensional Climate Model
下载PDF
OPERATIONAL FORECAST OF RAINFALL INDUCED BY LANDFALLING TROPICAL CYCLONES ALONG GUANGDONG COAST
2
作者 李晴岚 刘炳荣 +6 位作者 万齐林 王玉清 李广鑫 李铁键 兰红平 冯圣中 刘春霞 《Journal of Tropical Meteorology》 SCIE 2020年第1期1-13,共13页
Following previous studies of the rainfall forecast in Shenzhen owing to landfalling tropical cyclones(TCs),a nonparametric statistical scheme based on the classification of the landfalling TCs is applied to analyze a... Following previous studies of the rainfall forecast in Shenzhen owing to landfalling tropical cyclones(TCs),a nonparametric statistical scheme based on the classification of the landfalling TCs is applied to analyze and forecast the rainfall induced by landfalling TCs in the coastal area of Guangdong province,China.All the TCs landfalling with the distance less than 700 kilometers to the 8 coastal stations in Guangdong province during 1950—2013 are categorized according to their landfalling position and intensity.The daily rainfall records of all the 8 meteorological stations are obtained and analyzed.The maximum daily rainfall and the maximum 3 days’accumulated rainfall at the 8 coastal stations induced by each category of TCs during the TC landfall period(a couple of days before and after TC landfalling time)from 1950 to 2013 are computed by the percentile estimation and illustrated by boxplots.These boxplots can be used to estimate the rainfall induced by landfalling TC of the same category in the future.The statistical boxplot scheme is further coupled with the model outputs from the European Centre for Medium-Range Weather Forecasts(ECMWF)to predict the rainfall induced by landfalling TCs along the coastal area.The TCs landfalling in south China from 2014 to 2017 and the corresponding rainfall at the 8 stations area are used to evaluate the performance of these boxplots and coupled boxplots schemes.Results show that the statistical boxplots scheme and coupled boxplots scheme can perform better than ECMWF model in the operational rainfall forecast along the coastal area in south China. 展开更多
关键词 tropical cyclone coastal area rainfall forecast statistical boxplot scheme coupled boxplot scheme
下载PDF
A Coupled Discrete Unified Gas-Kinetic Scheme for Convection Heat Transfer in Porous Media
3
作者 Peiyao Liu Peng Wang +1 位作者 Long Jv Zhaoli Guo 《Communications in Computational Physics》 SCIE 2021年第1期265-291,共27页
In this paper,the discrete unified gas-kinetic scheme(DUGKS)is extended to the convection heat transfer in porous media at representative elementary volume(REV)scale,where the changes of velocity and temperature field... In this paper,the discrete unified gas-kinetic scheme(DUGKS)is extended to the convection heat transfer in porous media at representative elementary volume(REV)scale,where the changes of velocity and temperature fields are described by two kinetic equations.The effects from the porous medium are incorporated into the method by including the porosity into the equilibrium distribution function,and adding a resistance force in the kinetic equation for the velocity field.The proposed method is systematically validated by several canonical cases,including the mixed convection in porous channel,the natural convection in porous cavity,and the natural convection in a cavity partially filled with porous media.The numerical results are in good agreement with the benchmark solutions and the available experimental data.It is also shown that the coupled DUGKS yields a second-order accuracy in both temporal and spatial spaces. 展开更多
关键词 coupled discrete unified gas-kinetic scheme generalized Navier-Stokes equations porous media convection heat transfer
原文传递
ANALYSIS ON A NUMERICAL SCHEME WITH SECOND-ORDER TIME ACCURACY FOR NONLINEAR DIFFUSION EQUATIONS
4
作者 Xia Cui Guangwei Yuan Fei Zhao 《Journal of Computational Mathematics》 SCIE CSCD 2021年第5期777-800,共24页
A nonlinear fully implicit finite difference scheme with second-order time evolution for nonlinear diffusion problem is studied.The scheme is constructed with two-layer coupled discretization(TLCD)at each time step.It... A nonlinear fully implicit finite difference scheme with second-order time evolution for nonlinear diffusion problem is studied.The scheme is constructed with two-layer coupled discretization(TLCD)at each time step.It does not stir numerical oscillation,while permits large time step length,and produces more accurate numerical solutions than the other two well-known second-order time evolution nonlinear schemes,the Crank-Nicolson(CN)scheme and the backward difference formula second-order(BDF2)scheme.By developing a new reasoning technique,we overcome the difficulties caused by the coupled nonlinear discrete diffusion operators at different time layers,and prove rigorously the TLCD scheme is uniquely solvable,unconditionally stable,and has second-order convergence in both s-pace and time.Numerical tests verify the theoretical results,and illustrate its superiority over the CN and BDF2 schemes. 展开更多
关键词 Nonlinear diffusion problem Nonlinear two-layer coupled discrete scheme Second-order time accuracy Property analysis Unique existence CONVERGENCE
原文传递
Sharp interface direct forcing immersed boundary methods: A summary of some algorithms and applications 被引量:7
5
作者 Jianming YANG 《Journal of Hydrodynamics》 SCIE EI CSCD 2016年第5期713-730,共18页
Body-fitted mesh generation has long been the bottleneck of simulating fluid flows involving complex geometries. Immersed boundary methods are non-boundary-conforming methods that have gained great popularity in the l... Body-fitted mesh generation has long been the bottleneck of simulating fluid flows involving complex geometries. Immersed boundary methods are non-boundary-conforming methods that have gained great popularity in the last two decades for their simplicity and flexibility, as well as their non-compromised accuracy. This paper presents a summary of some numerical algori- thms along the line of sharp interface direct forcing approaches and their applications in some practical problems. The algorithms include basic Navier-Stokes solvers, immersed boundary setup procedures, treatments of stationary and moving immersed bounda- ries, and fluid-structure coupling schemes. Applications of these algorithms in particulate flows, flow-induced vibrations, biofluid dynamics, and free-surface hydrodynamics are demonstrated. Some concluding remarks are made, including several future research directions that can further expand the application regime of immersed boundary methods. 展开更多
关键词 immersed boundary methods direct forcing sharp interface method strong coupling schemes fluid-structureinteractions Cartesian grid methods
原文传递
CFD-DEM simulation of the hole cleaning process in a deviated well drilling: The effects of particle shape 被引量:8
6
作者 Siamak Akhshik Mehdi Behzad Majid Rajabi 《Particuology》 SCIE EI CAS CSCD 2016年第2期72-82,共11页
We investigate the effect of particle shape on the transportation mechanism in well-drilling using a three-dimensional model that couples computational fluid dynamics (CFD) with the discrete element method (DEM). ... We investigate the effect of particle shape on the transportation mechanism in well-drilling using a three-dimensional model that couples computational fluid dynamics (CFD) with the discrete element method (DEM). This numerical method allows us to incorporate the fluid-particle interactions (drag force, contact force, Saffman lift force, Magnus lift force, buoyancy force) using momentum exchange and the non-Newtonian behavior of the fluid. The interactions of particle-particle, particle-wall, and particle-drill pipe are taken into account with the Hertz-Mindlin model. We compare the transport of spheres with non-spherical particles (non-smooth sphere, disc, and cubic) constructed via the multi- sphere method for a range of fluid inlet velocities and drill pipe inclination angles. The simulations are carried out for laboratory-scale drilling configurations. Our results demonstrate good agreement with published experimental data. We evaluate the fluid-particle flow patterns, the particle velocities, and the particle concentration profiles. The results reveal that particle sphericity plays a major role in the fluid-solid interaction. The traditional assumption of an ideal spherical particle may cause inaccurate results. 展开更多
关键词 CFD-DEM method Deviated well drilling Particles transport Two-way coupling scheme Particle-fluid Interaction
原文传递
NUMERICAL SIMULATION OF TURBULENT SPOTS IN INCLINED OPEN-CHANNEL FLOW
7
作者 ZHANGLi TANGDeng-bin 《Journal of Hydrodynamics》 SCIE EI CSCD 2005年第2期179-185,共7页
The generation and evolution of turbulent spots in the open-channel flow are simulated numerically by using the Navier-Stokes equations. An effective numerical method with high accuracy and high resolution is develope... The generation and evolution of turbulent spots in the open-channel flow are simulated numerically by using the Navier-Stokes equations. An effective numerical method with high accuracy and high resolution is developed. The fourth-order time splitting methods with high accuracy is proposed. Three-dimensional coupling difference methods are presented for the spatial discretization of the Poisson equation of pressure and Hemholtz equations of velocity, therefore, the fourth-order three-dimensional coupling central difference schemes are constituted. The fourth-order explicit upwind-biased compact difference schemes are designed to overcome the difficulty for the general higher-order central difference scheme which is inadaptable in the boundary neighborhood. The iterative algorithm and overall time marching is used to enhance efficiency. The method is applied in the numerical simulation of turbulent spots at various complex boundary conditions and flow domains. The generation and the developing process of turbulent spots are given, and the basic characteristics of turbulent spots are shown by simulating the evolution of the wall pulse in inclined open-channel flow. 展开更多
关键词 turbulent spot Navier-Stokes equation numerical simulation three-dimensional coupling difference scheme wall pulse
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部