The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four ...The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four possible ports for an incident single photon. The quantum dot is considered a V-type system. The incident direction-dependent single photon scattering properties are studied and equal-output probability from the four ports for a single photon incident is discussed. The influences of backscattering between the two modes of the whispering-gallery resonator for incident direction-dependent single photon scattering properties are also pre- sented.展开更多
We utilize three parallel reservoir computers using semiconductor lasers with optical feedback and light injection to model radar probe signals with delays.Three radar probe signals are generated by driving lasers con...We utilize three parallel reservoir computers using semiconductor lasers with optical feedback and light injection to model radar probe signals with delays.Three radar probe signals are generated by driving lasers constructed by a threeelement laser array with self-feedback.The response lasers are implemented also by a three-element lase array with both delay-time feedback and optical injection,which are utilized as nonlinear nodes to realize the reservoirs.We show that each delayed radar probe signal can be predicted well and to synchronize with its corresponding trained reservoir,even when parameter mismatches exist between the response laser array and the driving laser array.Based on this,the three synchronous probe signals are utilized for ranging to three targets,respectively,using Hilbert transform.It is demonstrated that the relative errors for ranging can be very small and less than 0.6%.Our findings show that optical reservoir computing provides an effective way for applications of target ranging.展开更多
The emerging wide bandgap semiconductorβ-Ga_(2)O_(3) has attracted great interest due to its promising applications for high-power electronic devices and solar-blind ultraviolet photodetectors.Deep-level defects inβ...The emerging wide bandgap semiconductorβ-Ga_(2)O_(3) has attracted great interest due to its promising applications for high-power electronic devices and solar-blind ultraviolet photodetectors.Deep-level defects inβ-Ga_(2)O_(3) have been intensively studied towards improving device performance.Deep-level signatures E_(1),E_(2),and E_(3) with energy positions of 0.55–0.63,0.74–0.81,and 1.01–1.10 eV below the conduction band minimum have frequently been observed and extensively investigated,but their atomic origins are still under debate.In this work,we attempt to clarify these deep-level signatures from the comparison of theoretically predicted electron capture cross-sections of suggested candidates,Ti and Fe substituting Ga on a tetrahedral site(Ti_(GaI) and Fe_(GaI))and an octahedral site(Ti_(GaII) and Fe_(GaII)),to experimentally measured results.The first-principles approach predicted electron capture cross-sections of Ti_(GaI) and Ti_(GaII) defects are 8.56×10^(–14) and 2.97×10^(–13) cm^(2),in good agreement with the experimental values of E_(1) and E_(3) centers,respectively.We,therefore,confirmed that E_(1) and E_(3) centers are indeed associated with Ti_(GaI) and Ti_(GaII) defects,respectively.Whereas the predicted electron capture cross-sections of Fe_(Ga) defect are two orders of magnitude larger than the experimental value of the E_(2),indicating E_(2) may have other origins like C_(Ga) and Ga_(i),rather than common believed Fe_(Ga).展开更多
Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality...Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2-str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.展开更多
Natural paragenetic semiconducting minerals give important hints for fabricating stable and effective photocatalysts, which can be widely used in solar energy harvest and pollution control. To enhance the photoactivit...Natural paragenetic semiconducting minerals give important hints for fabricating stable and effective photocatalysts, which can be widely used in solar energy harvest and pollution control. To enhance the photoactivity of natural sphalerite(ZnS), needle-like nanocrystal MoS_2 was loaded on sphalerite surface through a hydrothermal method, mimicking the intergrowth of molybdenite(MoS_2) and sphalerite in nature. The resultant coupled MoS_2/sphalerite exhibited a hydrogen evolution reaction(HER) potential at-0.35 V(vs. NHE), and showed obvious photoresponse under visible-light. The photodegradation rate of methyl orange(MO) over MoS_2/sphalerite could reach 75% within 180 min. Compared to sphalerite, coupled MoS_2/sphalerite had a higher photocurrent,more positive HER potential and 66% higher photodegradation rate. The enhanced photoactivity was attributed to the charge transfer from sphalerite to MoS_2 and high electrons' mobility on MoS_2 layer.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11105001the Anhui Provincial Natural Science Foundation under Grant Nos 1408085QA22 and 1608085MA09
文摘The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four possible ports for an incident single photon. The quantum dot is considered a V-type system. The incident direction-dependent single photon scattering properties are studied and equal-output probability from the four ports for a single photon incident is discussed. The influences of backscattering between the two modes of the whispering-gallery resonator for incident direction-dependent single photon scattering properties are also pre- sented.
基金the National Natural Science Foundation of China(Grant No.62075168)Guang Dong Basic and Applied Basic Research Foundation(Grant No.2020A1515011088)Special Project in Key Fields of Guangdong Provincial Department of Education of China(Grant No.2020ZDZX3052 and 2019KZDZX1025)。
文摘We utilize three parallel reservoir computers using semiconductor lasers with optical feedback and light injection to model radar probe signals with delays.Three radar probe signals are generated by driving lasers constructed by a threeelement laser array with self-feedback.The response lasers are implemented also by a three-element lase array with both delay-time feedback and optical injection,which are utilized as nonlinear nodes to realize the reservoirs.We show that each delayed radar probe signal can be predicted well and to synchronize with its corresponding trained reservoir,even when parameter mismatches exist between the response laser array and the driving laser array.Based on this,the three synchronous probe signals are utilized for ranging to three targets,respectively,using Hilbert transform.It is demonstrated that the relative errors for ranging can be very small and less than 0.6%.Our findings show that optical reservoir computing provides an effective way for applications of target ranging.
基金This work was supported by the National Key Research and Development Program of China under Grant No.2018YFB2200105the Key Research Program of Frontier Sciences,CAS under Grant No.ZDBS-LY-JSC019the National Natural Science Foundation of China(NSFC)under Grant Nos.11925407 and 61927901.
文摘The emerging wide bandgap semiconductorβ-Ga_(2)O_(3) has attracted great interest due to its promising applications for high-power electronic devices and solar-blind ultraviolet photodetectors.Deep-level defects inβ-Ga_(2)O_(3) have been intensively studied towards improving device performance.Deep-level signatures E_(1),E_(2),and E_(3) with energy positions of 0.55–0.63,0.74–0.81,and 1.01–1.10 eV below the conduction band minimum have frequently been observed and extensively investigated,but their atomic origins are still under debate.In this work,we attempt to clarify these deep-level signatures from the comparison of theoretically predicted electron capture cross-sections of suggested candidates,Ti and Fe substituting Ga on a tetrahedral site(Ti_(GaI) and Fe_(GaI))and an octahedral site(Ti_(GaII) and Fe_(GaII)),to experimentally measured results.The first-principles approach predicted electron capture cross-sections of Ti_(GaI) and Ti_(GaII) defects are 8.56×10^(–14) and 2.97×10^(–13) cm^(2),in good agreement with the experimental values of E_(1) and E_(3) centers,respectively.We,therefore,confirmed that E_(1) and E_(3) centers are indeed associated with Ti_(GaI) and Ti_(GaII) defects,respectively.Whereas the predicted electron capture cross-sections of Fe_(Ga) defect are two orders of magnitude larger than the experimental value of the E_(2),indicating E_(2) may have other origins like C_(Ga) and Ga_(i),rather than common believed Fe_(Ga).
文摘Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2-str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.
基金supported by the National Basic Research Program of China(Grant No.2014CB846001)the National Natural Science Foundation of China(Grant Nos.41230103,41272003&41522201)
文摘Natural paragenetic semiconducting minerals give important hints for fabricating stable and effective photocatalysts, which can be widely used in solar energy harvest and pollution control. To enhance the photoactivity of natural sphalerite(ZnS), needle-like nanocrystal MoS_2 was loaded on sphalerite surface through a hydrothermal method, mimicking the intergrowth of molybdenite(MoS_2) and sphalerite in nature. The resultant coupled MoS_2/sphalerite exhibited a hydrogen evolution reaction(HER) potential at-0.35 V(vs. NHE), and showed obvious photoresponse under visible-light. The photodegradation rate of methyl orange(MO) over MoS_2/sphalerite could reach 75% within 180 min. Compared to sphalerite, coupled MoS_2/sphalerite had a higher photocurrent,more positive HER potential and 66% higher photodegradation rate. The enhanced photoactivity was attributed to the charge transfer from sphalerite to MoS_2 and high electrons' mobility on MoS_2 layer.