In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned man...In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy.展开更多
Correct predictions of the behavior of flexible bodies undergoing large rigid-body motions and small elastic vibrations is a subject of major concern in the field of flexible multibody system dynamics. Because of fail...Correct predictions of the behavior of flexible bodies undergoing large rigid-body motions and small elastic vibrations is a subject of major concern in the field of flexible multibody system dynamics. Because of failing to account for the effects of dynamic stiffening, conventional methods based on the linear theories can lead to erroneous results in many practical applications. In this paper, the idea of 'centrifugal potential field', which induced by large overall rotation is introduced, and the motion equation of a coupled rigid-flexible system by employing Hamilton's principle is established. Based on this equation, first it is proved that the elastic motion of the system has periodic property, then by using Frobenius' method its exact solution is obtained. The influences of large overall rigid motion on the elastic vibration mode shape and frequency are analysed through the numerical examples.展开更多
基金sponsored by Bureau Veritas under the administration of Dr.ime Malenica
文摘In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy.
文摘Correct predictions of the behavior of flexible bodies undergoing large rigid-body motions and small elastic vibrations is a subject of major concern in the field of flexible multibody system dynamics. Because of failing to account for the effects of dynamic stiffening, conventional methods based on the linear theories can lead to erroneous results in many practical applications. In this paper, the idea of 'centrifugal potential field', which induced by large overall rotation is introduced, and the motion equation of a coupled rigid-flexible system by employing Hamilton's principle is established. Based on this equation, first it is proved that the elastic motion of the system has periodic property, then by using Frobenius' method its exact solution is obtained. The influences of large overall rigid motion on the elastic vibration mode shape and frequency are analysed through the numerical examples.